- Improved sc function binder.

- Improved GLGSRender.
This commit is contained in:
DH 2013-06-30 11:46:29 +03:00
parent 3bb7a299ca
commit 5753edf6ef
133 changed files with 13624 additions and 3898 deletions

View file

@ -1,5 +1,7 @@
#pragma once
#include "Emu/Cell/PPCThread.h"
#include "Emu/SysCalls/SysCalls.h"
#include "rpcs3.h"
enum
{
@ -215,14 +217,14 @@ union CRhdr
struct
{
u8 cr0 : 4;
u8 cr1 : 4;
u8 cr2 : 4;
u8 cr3 : 4;
u8 cr4 : 4;
u8 cr5 : 4;
u8 cr6 : 4;
u8 cr7 : 4;
u8 cr6 : 4;
u8 cr5 : 4;
u8 cr4 : 4;
u8 cr3 : 4;
u8 cr2 : 4;
u8 cr1 : 4;
u8 cr0 : 4;
};
};
@ -239,6 +241,49 @@ union XERhdr
};
};
union VSCRhdr
{
u32 VSCR;
struct
{
/*
Saturation. A sticky status bit indicating that some field in a saturating instruction saturated since the last
time SAT was cleared. In other words when SAT = 1 it remains set to 1 until it is cleared to 0 by an
mtvscr instruction.
1 The vector saturate instruction implicitly sets when saturation has occurred on the results one of
the vector instructions having saturate in its name:
Move To VSCR (mtvscr)
Vector Add Integer with Saturation (vaddubs, vadduhs, vadduws, vaddsbs, vaddshs,
vaddsws)
Vector Subtract Integer with Saturation (vsububs, vsubuhs, vsubuws, vsubsbs, vsubshs,
vsubsws)
Vector Multiply-Add Integer with Saturation (vmhaddshs, vmhraddshs)
Vector Multiply-Sum with Saturation (vmsumuhs, vmsumshs, vsumsws)
Vector Sum-Across with Saturation (vsumsws, vsum2sws, vsum4sbs, vsum4shs,
vsum4ubs)
Vector Pack with Saturation (vpkuhus, vpkuwus, vpkshus, vpkswus, vpkshss, vpkswss)
Vector Convert to Fixed-Point with Saturation (vctuxs, vctsxs)
0 Indicates no saturation occurred; mtvscr can explicitly clear this bit.
*/
u32 SAT : 1;
u32 X : 15;
/*
Non-Java. A mode control bit that determines whether vector floating-point operations will be performed
in a Java-IEEE-C9Xcompliant mode or a possibly faster non-Java/non-IEEE mode.
0 The Java-IEEE-C9Xcompliant mode is selected. Denormalized values are handled as specified
by Java, IEEE, and C9X standard.
1 The non-Java/non-IEEEcompliant mode is selected. If an element in a source vector register
contains a denormalized value, the value 0 is used instead. If an instruction causes an underflow
exception, the corresponding element in the target VR is cleared to 0. In both cases, the 0
has the same sign as the denormalized or underflowing value.
*/
u32 NJ : 1;
u32 Y : 15;
};
};
enum FPRType
{
FPR_NORM,
@ -280,35 +325,53 @@ struct PPCdouble
};
FPRType type;
operator double&() { return _double; }
operator const double&() const { return _double; }
u32 GetType()
PPCdouble& operator = (const PPCdouble& r)
{
if(exp > 0 && exp < 0x7ff) return sign ? FPR_NN : FPR_PN;
if(frac)
{
if(exp) return FPR_QNAN;
return sign ? FPR_INF : FPR_PINF;
}
return sign ? FPR_NZ : FPR_PZ;
_u64 = r._u64;
type = UpdateType();
return *this;
}
u32 To32()
FPRType UpdateType() const
{
if (exp > 896 || (!frac && !exp))
const int fpc = _fpclass(_double);
switch(fpc)
{
return ((_u64 >> 32) & 0xc0000000) | ((_u64 >> 29) & 0x3fffffff);
case _FPCLASS_SNAN: return FPR_SNAN;
case _FPCLASS_QNAN: return FPR_QNAN;
case _FPCLASS_NINF: return FPR_NINF;
case _FPCLASS_NN: return FPR_NN;
case _FPCLASS_ND: return FPR_ND;
case _FPCLASS_NZ: return FPR_NZ;
case _FPCLASS_PZ: return FPR_PZ;
case _FPCLASS_PD: return FPR_PD;
case _FPCLASS_PN: return FPR_PN;
case _FPCLASS_PINF: return FPR_PINF;
}
if (exp >= 874)
{
return ((0x80000000 | (frac >> 21)) >> (905 - exp)) | (_u64 >> 32) & 0x80000000;
}
throw wxString::Format("PPCdouble::UpdateType() -> unknown fpclass (0x%04x).", fpc);
}
//?
return ((_u64 >> 32) & 0xc0000000) | ((_u64 >> 29) & 0x3fffffff);
FPRType GetType() const
{
return type;
}
u32 To32() const
{
float res = _double;
return (u32&)res;
}
u64 To64() const
{
return (u64&)_double;
}
u32 GetZerosCount()
@ -369,370 +432,76 @@ struct PPCdouble
struct FPRdouble
{
static PPCdouble ConvertToIntegerMode(const PPCdouble& d, FPSCRhdr& fpscr, bool is_64, u32 round_mode)
{
PPCdouble ret;
if(d.exp == 2047)
{
if (d.frac == 0)
{
ret.type = FPR_INF;
fpscr.FI = 0;
fpscr.FR = 0;
fpscr.VXCVI = 1;
if(fpscr.VE == 0)
{
if(is_64)
{
return d.sign ? 0x8000000000000000 : 0x7FFFFFFFFFFFFFFF;
}
else
{
return d.sign ? 0x80000000 : 0x7FFFFFFF;
}
fpscr.FPRF = 0;
}
}
else if(d.nan == 0)
{
ret.type = FPR_SNAN;
fpscr.FI = 0;
fpscr.FR = 0;
fpscr.VXCVI = 1;
fpscr.VXSNAN = 1;
if(fpscr.VE == 0)
{
return is_64 ? 0x8000000000000000 : 0x80000000;
fpscr.FPRF = 0;
}
}
else
{
ret.type = FPR_QNAN;
fpscr.FI = 0;
fpscr.FR = 0;
fpscr.VXCVI = 1;
if(fpscr.VE == 0)
{
return is_64 ? 0x8000000000000000 : 0x80000000;
fpscr.FPRF = 0;
}
}
}
else if(d.exp > 1054)
{
fpscr.FI = 0;
fpscr.FR = 0;
fpscr.VXCVI = 1;
if(fpscr.VE == 0)
{
if(is_64)
{
return d.sign ? 0x8000000000000000 : 0x7FFFFFFFFFFFFFFF;
}
else
{
return d.sign ? 0x80000000 : 0x7FFFFFFF;
}
fpscr.FPRF = 0;
}
}
ret.sign = d.sign;
if(d.exp > 0)
{
ret.exp = d.exp - 1023;
ret.frac = 1 | d.frac;
}
else if(d.exp == 0)
{
ret.exp = -1022;
ret.frac = d.frac;
}
/*
if(d.exp == 0)
{
if (d.frac == 0)
{
d.type = FPR_ZERO;
}
else
{
const u32 z = d.GetZerosCount() - 8;
d.frac <<= z + 3;
d.exp -= 1023 - 1 + z;
d.type = FPR_NORM;
}
}
else
{
d.exp -= 1023;
d.type = FPR_NORM;
d.nan = 1;
d.frac <<= 3;
}
*/
return ret;
}
static u32 ConvertToFloatMode(PPCdouble& d, u32 RN)
{
/*
u32 fpscr = 0;
switch (d.type)
{
case FPR_NORM:
d.exp += 1023;
if (d.exp > 0)
{
fpscr |= Round(d, RN);
if(d.nan)
{
d.exp++;
d.frac >>= 4;
}
else
{
d.frac >>= 3;
}
if(d.exp >= 2047)
{
d.exp = 2047;
d.frac = 0;
fpscr |= FPSCR_OX;
}
}
else
{
d.exp = -(s64)d.exp + 1;
if(d.exp <= 56)
{
d.frac >>= d.exp;
fpscr |= Round(d, RN);
d.frac <<= 1;
if(d.nan)
{
d.exp = 1;
d.frac = 0;
}
else
{
d.exp = 0;
d.frac >>= 4;
fpscr |= FPSCR_UX;
}
}
else
{
d.exp = 0;
d.frac = 0;
fpscr |= FPSCR_UX;
}
}
break;
case FPR_ZERO:
d.exp = 0;
d.frac = 0;
break;
case FPR_NAN:
d.exp = 2047;
d.frac = 1;
break;
case FPR_INF:
d.exp = 2047;
d.frac = 0;
break;
}
return fpscr;
*/
return 0;
}
static u32 Round(PPCdouble& d, u32 RN)
{
switch(RN)
{
case FPSCR_RN_NEAR:
if(d.frac & 0x7)
{
if((d.frac & 0x7) != 4 || d.frac & 0x8)
{
d.frac += 4;
}
return FPSCR_XX;
}
return 0;
case FPSCR_RN_ZERO:
if(d.frac & 0x7) return FPSCR_XX;
return 0;
case FPSCR_RN_PINF:
if(!d.sign && (d.frac & 0x7))
{
d.frac += 8;
return FPSCR_XX;
}
return 0;
case FPSCR_RN_MINF:
if(d.sign && (d.frac & 0x7))
{
d.frac += 8;
return FPSCR_XX;
}
return 0;
}
return 0;
}
static const u64 double_sign = 0x8000000000000000ULL;
static const u64 double_frac = 0x000FFFFFFFFFFFFFULL;
static bool IsINF(double d);
static bool IsNaN(double d);
static bool IsQNaN(double d);
static bool IsSNaN(double d);
static int Cmp(double a, double b);
static bool IsINF(PPCdouble d);
static bool IsNaN(PPCdouble d);
static bool IsQNaN(PPCdouble d);
static bool IsSNaN(PPCdouble d);
static int Cmp(PPCdouble a, PPCdouble b);
};
union VPR_reg
{
//__m128i _m128i;
u128 _u128;
s128 _i128;
s128 _s128;
u64 _u64[2];
s64 _i64[2];
s64 _s64[2];
u32 _u32[4];
s32 _i32[4];
s32 _s32[4];
u16 _u16[8];
s16 _i16[8];
s16 _s16[8];
u8 _u8[16];
s8 _i8[16];
//struct { float x, y, z, w; };
s8 _s8[16];
float _f[4];
double _d[2];
VPR_reg() { Clear(); }
VPR_reg(const __m128i val){_u128._u64[0] = val.m128i_u64[0]; _u128._u64[1] = val.m128i_u64[1];}
VPR_reg(const u128 val) { _u128 = val; }
VPR_reg(const u64 val) { Clear(); _u64[0] = val; }
VPR_reg(const u32 val) { Clear(); _u32[0] = val; }
VPR_reg(const u16 val) { Clear(); _u16[0] = val; }
VPR_reg(const u8 val) { Clear(); _u8[0] = val; }
VPR_reg(const s128 val) { _i128 = val; }
VPR_reg(const s64 val) { Clear(); _i64[0] = val; }
VPR_reg(const s32 val) { Clear(); _i32[0] = val; }
VPR_reg(const s16 val) { Clear(); _i16[0] = val; }
VPR_reg(const s8 val) { Clear(); _i8[0] = val; }
operator u128() const { return _u128; }
operator s128() const { return _i128; }
operator u64() const { return _u64[0]; }
operator s64() const { return _i64[0]; }
operator u32() const { return _u32[0]; }
operator s32() const { return _i32[0]; }
operator u16() const { return _u16[0]; }
operator s16() const { return _i16[0]; }
operator u8() const { return _u8[0]; }
operator s8() const { return _i8[0]; }
operator __m128i() { __m128i ret; ret.m128i_u64[0]=_u128._u64[0]; ret.m128i_u64[1]=_u128._u64[1]; return ret; }
operator bool() const { return _u64[0] != 0 || _u64[1] != 0; }
wxString ToString() const
wxString ToString(bool hex=false) const
{
return wxString::Format("%08x%08x%08x%08x", _u32[3], _u32[2], _u32[1], _u32[0]);
if(hex) return wxString::Format("%08x%08x%08x%08x", _u32[3], _u32[2], _u32[1], _u32[0]);
return wxString::Format("x: %g y: %g z: %g w: %g", _f[3], _f[2], _f[1], _f[0]);
}
VPR_reg operator ^ (VPR_reg right) { return _mm_xor_si128(*this, right); }
VPR_reg operator | (VPR_reg right) { return _mm_or_si128 (*this, right); }
VPR_reg operator & (VPR_reg right) { return _mm_and_si128(*this, right); }
u8 GetBit(u8 bit)
{
if(bit < 64) return (_u64[0] >> bit) & 0x1;
VPR_reg operator ^ (__m128i right) { return _mm_xor_si128(*this, right); }
VPR_reg operator | (__m128i right) { return _mm_or_si128 (*this, right); }
VPR_reg operator & (__m128i right) { return _mm_and_si128(*this, right); }
return (_u64[1] >> (bit - 64)) & 0x1;
}
bool operator == (const VPR_reg& right){ return _u64[0] == right._u64[0] && _u64[1] == right._u64[1]; }
void SetBit(u8 bit, u8 value)
{
if(bit < 64)
{
_u64[0] &= ~(1 << bit);
_u64[0] |= (value & 0x1) << bit;
bool operator == (const u128 right) { return _u64[0] == right._u64[0] && _u64[1] == right._u64[1]; }
bool operator == (const s128 right) { return _i64[0] == right._i64[0] && _i64[1] == right._i64[1]; }
bool operator == (const u64 right) { return _u64[0] == (u64)right && _u64[1] == 0; }
bool operator == (const s64 right) { return _i64[0] == (s64)right && _i64[1] == 0; }
bool operator == (const u32 right) { return _u64[0] == (u64)right && _u64[1] == 0; }
bool operator == (const s32 right) { return _i64[0] == (s64)right && _i64[1] == 0; }
bool operator == (const u16 right) { return _u64[0] == (u64)right && _u64[1] == 0; }
bool operator == (const s16 right) { return _i64[0] == (s64)right && _i64[1] == 0; }
bool operator == (const u8 right) { return _u64[0] == (u64)right && _u64[1] == 0; }
bool operator == (const s8 right) { return _i64[0] == (s64)right && _i64[1] == 0; }
return;
}
bool operator != (const VPR_reg& right){ return !(*this == right); }
bool operator != (const u128 right) { return !(*this == right); }
bool operator != (const u64 right) { return !(*this == right); }
bool operator != (const u32 right) { return !(*this == right); }
bool operator != (const u16 right) { return !(*this == right); }
bool operator != (const u8 right) { return !(*this == right); }
bool operator != (const s128 right) { return !(*this == right); }
bool operator != (const s64 right) { return !(*this == right); }
bool operator != (const s32 right) { return !(*this == right); }
bool operator != (const s16 right) { return !(*this == right); }
bool operator != (const s8 right) { return !(*this == right); }
bit -= 64;
s64& d(const u32 c) { return _i64[1 - c]; }
u64& ud(const u32 c) { return _u64[1 - c]; }
s32& w(const u32 c) { return _i32[3 - c]; }
u32& uw(const u32 c) { return _u32[3 - c]; }
s16& h(const u32 c) { return _i16[7 - c]; }
u16& uh(const u32 c) { return _u16[7 - c]; }
s8& b(const u32 c) { return _i8[15 - c]; }
u8& ub(const u32 c) { return _u8[15 - c]; }
_u64[1] &= ~(1 << bit);
_u64[1] |= (value & 0x1) << bit;
}
void Clear() { memset(this, 0, sizeof(*this)); }
};
/*
struct VPR_table
{
VPR_reg t[32];
operator VPR_reg*() { return t; }
VPR_reg& operator [] (int index)
{
return t[index];
}
}
*/
static const s32 MAX_INT_VALUE = 0x7fffffff;
class PPUThread : public PPCThread
class PPUThread
: public PPCThread
, public SysCalls
{
public:
double FPR[32]; //Floating Point Register
PPCdouble FPR[32]; //Floating Point Register
FPSCRhdr FPSCR; //Floating Point Status and Control Register
u64 GPR[32]; //General-Purpose Register
VPR_reg VPR[32];
@ -786,12 +555,16 @@ public:
MSRhdr MSR; //Machine State Register
PVRhdr PVR; //Processor Version Register
VSCRhdr VSCR; // Vector Status and Control Register
u64 LR; //SPR 0x008 : Link Register
u64 CTR; //SPR 0x009 : Count Register
s32 USPRG; //SPR 0x100 : User-SPR General-Purpose Registers
s32 SPRG[8]; //SPR 0x100 - 0x107 : SPR General-Purpose Registers
union
{
u64 USPRG0; //SPR 0x100 : User-SPR General-Purpose Register 0
u64 SPRG[8]; //SPR 0x100 - 0x107 : SPR General-Purpose Registers
};
//TBR : Time-Base Registers
union
@ -818,14 +591,14 @@ public:
{
switch(n)
{
case 7: return CR.cr0;
case 6: return CR.cr1;
case 5: return CR.cr2;
case 4: return CR.cr3;
case 3: return CR.cr4;
case 2: return CR.cr5;
case 1: return CR.cr6;
case 0: return CR.cr7;
case 0: return CR.cr0;
case 1: return CR.cr1;
case 2: return CR.cr2;
case 3: return CR.cr3;
case 4: return CR.cr4;
case 5: return CR.cr5;
case 6: return CR.cr6;
case 7: return CR.cr7;
}
return 0;
@ -835,14 +608,14 @@ public:
{
switch(n)
{
case 7: CR.cr0 = value; break;
case 6: CR.cr1 = value; break;
case 5: CR.cr2 = value; break;
case 4: CR.cr3 = value; break;
case 3: CR.cr4 = value; break;
case 2: CR.cr5 = value; break;
case 1: CR.cr6 = value; break;
case 0: CR.cr7 = value; break;
case 0: CR.cr0 = value; break;
case 1: CR.cr1 = value; break;
case 2: CR.cr2 = value; break;
case 3: CR.cr3 = value; break;
case 4: CR.cr4 = value; break;
case 5: CR.cr5 = value; break;
case 6: CR.cr6 = value; break;
case 7: CR.cr7 = value; break;
}
}
@ -850,14 +623,14 @@ public:
{
switch(n)
{
case 7: value ? CR.cr0 |= bit : CR.cr0 &= ~bit; break;
case 6: value ? CR.cr1 |= bit : CR.cr1 &= ~bit; break;
case 5: value ? CR.cr2 |= bit : CR.cr2 &= ~bit; break;
case 4: value ? CR.cr3 |= bit : CR.cr3 &= ~bit; break;
case 3: value ? CR.cr4 |= bit : CR.cr4 &= ~bit; break;
case 2: value ? CR.cr5 |= bit : CR.cr5 &= ~bit; break;
case 1: value ? CR.cr6 |= bit : CR.cr6 &= ~bit; break;
case 0: value ? CR.cr7 |= bit : CR.cr7 &= ~bit; break;
case 0: value ? CR.cr0 |= bit : CR.cr0 &= ~bit; break;
case 1: value ? CR.cr1 |= bit : CR.cr1 &= ~bit; break;
case 2: value ? CR.cr2 |= bit : CR.cr2 &= ~bit; break;
case 3: value ? CR.cr3 |= bit : CR.cr3 &= ~bit; break;
case 4: value ? CR.cr4 |= bit : CR.cr4 &= ~bit; break;
case 5: value ? CR.cr5 |= bit : CR.cr5 &= ~bit; break;
case 6: value ? CR.cr6 |= bit : CR.cr6 &= ~bit; break;
case 7: value ? CR.cr7 |= bit : CR.cr7 &= ~bit; break;
}
}
@ -916,17 +689,31 @@ public:
virtual wxString RegsToString()
{
wxString ret = PPCThread::RegsToString();
for(uint i=0; i<32; ++i) ret += wxString::Format("GPR[%d] = 0x%llx\n", i, GPR[i]);
for(uint i=0; i<32; ++i) ret += wxString::Format("FPR[%d] = %.6G\n", i, FPR[i]);
for(uint i=0; i<32; ++i) ret += wxString::Format("VPR[%d] = 0x%s [%s]\n", i, VPR[i].ToString(true), VPR[i].ToString());
ret += wxString::Format("CR = 0x%08x\n", CR);
ret += wxString::Format("LR = 0x%llx\n", LR);
ret += wxString::Format("CTR = 0x%llx\n", CTR);
ret += wxString::Format("XER = 0x%llx\n", XER);
ret += wxString::Format("FPSCR = 0x%x\n", FPSCR);
ret += wxString::Format("XER = 0x%llx [CA=%lld | OV=%lld | SO=%lld]\n", XER, XER.CA, XER.OV, XER.SO);
ret += wxString::Format("FPSCR = 0x%x "
"[RN=%d | NI=%d | XE=%d | ZE=%d | UE=%d | OE=%d | VE=%d | "
"VXCVI=%d | VXSQRT=%d | VXSOFT=%d | FPRF=%d | "
"FI=%d | FR=%d | VXVC=%d | VXIMZ=%d | "
"VXZDZ=%d | VXIDI=%d | VXISI=%d | VXSNAN=%d | "
"XX=%d | ZX=%d | UX=%d | OX=%d | VX=%d | FEX=%d | FX=%d]\n",
FPSCR,
FPSCR.RN,
FPSCR.NI, FPSCR.XE, FPSCR.ZE, FPSCR.UE, FPSCR.OE, FPSCR.VE,
FPSCR.VXCVI, FPSCR.VXSQRT, FPSCR.VXSOFT, FPSCR.FPRF,
FPSCR.FI, FPSCR.FR, FPSCR.VXVC, FPSCR.VXIMZ,
FPSCR.VXZDZ, FPSCR.VXIDI, FPSCR.VXISI, FPSCR.VXSNAN,
FPSCR.XX, FPSCR.ZX, FPSCR.UX, FPSCR.OX, FPSCR.VX, FPSCR.FEX, FPSCR.FX);
return ret;
}
void SetBranch(const u64 pc);
virtual void AddArgv(const wxString& arg);
public:
@ -940,6 +727,8 @@ protected:
virtual void DoResume();
virtual void DoStop();
private:
public:
virtual void DoCode(const s32 code);
};
};
PPUThread& GetCurrentPPUThread();