SPU ASMJIT: übertrampolines and spu_runtime

Use opt-out shared spu_runtime to save memory (Option: SPU Shared Runtime)
Implement "übertrampolines" for dispatching compiled blocks
Patch fixed branch points to use trampolines after check failure
This commit is contained in:
Nekotekina 2018-04-16 18:27:57 +03:00
parent 8ca33bcb94
commit 3ffafb741c
7 changed files with 329 additions and 61 deletions

View file

@ -31,12 +31,6 @@ std::unique_ptr<spu_recompiler_base> spu_recompiler_base::make_asmjit_recompiler
spu_runtime::spu_runtime()
{
if (g_cfg.core.spu_debug)
{
fs::file log(Emu.GetCachePath() + "SPUJIT.log", fs::rewrite);
log.write(fmt::format("SPU JIT Log...\n\nTitle: %s\nTitle ID: %s\n\n", Emu.GetTitle().c_str(), Emu.GetTitleID().c_str()));
}
LOG_SUCCESS(SPU, "SPU Recompiler Runtime (ASMJIT) initialized...");
// Initialize lookup table
@ -51,8 +45,23 @@ spu_runtime::spu_runtime()
spu_recompiler::spu_recompiler(SPUThread& spu)
: spu_recompiler_base(spu)
, m_rt(std::make_shared<asmjit::JitRuntime>())
{
if (!g_cfg.core.spu_shared_runtime)
{
m_spurt = std::make_shared<spu_runtime>();
}
}
spu_function_t spu_recompiler::get(u32 lsa)
{
// Initialize if necessary
if (!m_spurt)
{
m_spurt = fxm::get_always<spu_runtime>();
}
// Simple atomic read
return m_spurt->m_dispatcher[lsa / 4];
}
spu_function_t spu_recompiler::compile(const std::vector<u32>& func)
@ -63,6 +72,24 @@ spu_function_t spu_recompiler::compile(const std::vector<u32>& func)
m_spurt = fxm::get_always<spu_runtime>();
}
// Don't lock without shared runtime
std::unique_lock<shared_mutex> lock(m_spurt->m_mutex, std::defer_lock);
if (g_cfg.core.spu_shared_runtime)
{
lock.lock();
}
// Try to find existing function
{
const auto found = m_spurt->m_map.find(func);
if (found != m_spurt->m_map.end() && found->second)
{
return found->second;
}
}
using namespace asmjit;
SPUDisAsm dis_asm(CPUDisAsm_InterpreterMode);
@ -78,8 +105,9 @@ spu_function_t spu_recompiler::compile(const std::vector<u32>& func)
fmt::append(log, "========== SPU BLOCK 0x%05x (size %u) ==========\n\n", func[0], func.size() - 1);
}
asmjit::CodeHolder code;
code.init(m_rt->getCodeInfo());
CodeHolder code;
code.init(m_spurt->m_jitrt.getCodeInfo());
code._globalHints = asmjit::CodeEmitter::kHintOptimizedAlign;
X86Assembler compiler(&code);
this->c = &compiler;
@ -626,7 +654,7 @@ spu_function_t spu_recompiler::compile(const std::vector<u32>& func)
c->align(kAlignCode, 16);
c->bind(label_diff);
c->inc(SPU_OFF_64(block_failure));
c->jmp(asmjit::imm_ptr(&spu_recompiler_base::dispatch));
c->jmp(imm_ptr(&spu_recompiler_base::dispatch));
for (auto&& work : decltype(after)(std::move(after)))
{
@ -648,15 +676,228 @@ spu_function_t spu_recompiler::compile(const std::vector<u32>& func)
// Compile and get function address
spu_function_t fn;
if (m_rt->add(&fn, &code))
if (m_spurt->m_jitrt.add(&fn, &code))
{
LOG_FATAL(SPU, "Failed to build a function");
}
// Register function
m_spurt->m_map[func] = fn;
// Generate a dispatcher (übertrampoline)
std::vector<u32> addrv{func[0]};
const auto beg = m_spurt->m_map.lower_bound(addrv);
addrv[0] += 4;
const auto end = m_spurt->m_map.lower_bound(addrv);
const u32 size0 = std::distance(beg, end);
if (size0 == 1)
{
m_spurt->m_dispatcher[func[0] / 4] = fn;
}
else
{
CodeHolder code;
code.init(m_spurt->m_jitrt.getCodeInfo());
X86Assembler compiler(&code);
this->c = &compiler;
if (g_cfg.core.spu_debug)
{
// Set logger
code.setLogger(&logger);
}
compiler.comment("\n\nTrampoline:\n\n");
struct work
{
u32 size;
u32 level;
Label label;
std::map<std::vector<u32>, spu_function_t>::iterator beg;
std::map<std::vector<u32>, spu_function_t>::iterator end;
};
std::vector<work> workload;
workload.reserve(size0);
workload.emplace_back();
workload.back().size = size0;
workload.back().level = 1;
workload.back().beg = beg;
workload.back().end = end;
for (std::size_t i = 0; i < workload.size(); i++)
{
// Get copy of the workload info
work w = workload[i];
// Split range in two parts
auto it = w.beg;
auto it2 = w.beg;
u32 size1 = w.size / 2;
u32 size2 = w.size - size1;
std::advance(it2, w.size / 2);
while (true)
{
it = it2;
size1 = w.size - size2;
// Adjust ranges (forward)
while (it != w.end && w.beg->first.at(w.level) == it->first.at(w.level))
{
it++;
size1++;
}
if (it == w.end)
{
// Cannot split: words are identical within the range at this level
w.level++;
}
else
{
size2 = w.size - size1;
break;
}
}
// Value for comparison
const u32 x = it->first.at(w.level);
// Adjust ranges (backward)
while (true)
{
it--;
if (it->first.at(w.level) != x)
{
it++;
break;
}
verify(HERE), it != w.beg;
size1--;
size2++;
}
if (w.label.isValid())
{
c->align(kAlignCode, 16);
c->bind(w.label);
}
c->cmp(x86::dword_ptr(*ls, func[0] + (w.level - 1) * 4), x);
// Low subrange target label
Label label_below;
if (size1 == 1)
{
label_below = c->newLabel();
c->jb(label_below);
}
else
{
workload.push_back(w);
workload.back().end = it;
workload.back().size = size1;
workload.back().label = c->newLabel();
c->jb(workload.back().label);
}
// Second subrange target
const auto target = it->second ? it->second : &dispatch;
if (size2 == 1)
{
c->jmp(imm_ptr(target));
}
else
{
it2 = it;
// Select additional midrange for equality comparison
while (it2 != w.end && it2->first.at(w.level) == x)
{
size2--;
it2++;
}
if (it2 != w.end)
{
// High subrange target label
Label label_above;
if (size2 == 1)
{
label_above = c->newLabel();
c->ja(label_above);
}
else
{
workload.push_back(w);
workload.back().beg = it2;
workload.back().size = size2;
workload.back().label = c->newLabel();
c->ja(workload.back().label);
}
const u32 size3 = w.size - size1 - size2;
if (size3 == 1)
{
c->jmp(imm_ptr(target));
}
else
{
workload.push_back(w);
workload.back().beg = it;
workload.back().end = it2;
workload.back().size = size3;
workload.back().label = c->newLabel();
c->jmp(workload.back().label);
}
if (label_above.isValid())
{
c->bind(label_above);
c->jmp(imm_ptr(it2->second ? it2->second : &dispatch));
}
}
else
{
workload.push_back(w);
workload.back().beg = it;
workload.back().size = w.size - size1;
workload.back().label = c->newLabel();
c->jmp(workload.back().label);
}
}
if (label_below.isValid())
{
c->bind(label_below);
c->jmp(imm_ptr(w.beg->second ? w.beg->second : &dispatch));
}
}
spu_function_t tr;
if (m_spurt->m_jitrt.add(&tr, &code))
{
LOG_FATAL(SPU, "Failed to build a trampoline");
}
m_spurt->m_dispatcher[func[0] / 4] = tr;
}
if (g_cfg.core.spu_debug)
{
// Add ASMJIT logs
fmt::append(log, "{%s} Address: %p\n\n", m_spu.get_name(), fn);
fmt::append(log, "Address: %p (%p)\n\n", fn, +m_spurt->m_dispatcher[func[0] / 4]);
log += logger.getString();
log += "\n\n\n";
@ -731,25 +972,24 @@ void spu_recompiler::branch_fixed(u32 target)
Label patch_point = c->newLabel();
c->lea(*qw0, x86::qword_ptr(patch_point));
c->mov(SPU_OFF_32(pc), target);
c->align(kAlignCode, 16);
// Need to emit exactly one executable instruction within 8 bytes
c->align(kAlignCode, 8);
c->bind(patch_point);
const auto result = m_spu.jit_map.emplace(block(m_spu, target), nullptr);
const auto result = m_spurt->m_map.emplace(block(m_spu, target), nullptr);
if (result.second || !result.first->second)
{
if (result.first->first.size())
{
// Target block hasn't been compiled yet, record overwriting position
c->mov(*ls, imm_ptr(&*result.first));
c->jmp(imm_ptr(&spu_recompiler_base::branch));
}
else
{
// SPURS Workload entry point or similar thing
c->mov(x86::r10, x86::qword_ptr(*cpu, offset32(&SPUThread::jit_dispatcher) + target * 2));
c->xor_(qw0->r32(), qw0->r32());
c->jmp(x86::r10);
// SPURS Workload entry point or similar thing (emit 8-byte NOP)
c->dq(0x841f0f);
}
}
else
@ -757,7 +997,14 @@ void spu_recompiler::branch_fixed(u32 target)
c->jmp(imm_ptr(result.first->second));
}
c->align(kAlignCode, 16);
// Branch via dispatcher (occupies 16 bytes including padding)
c->align(kAlignCode, 8);
c->mov(x86::rax, x86::qword_ptr(*cpu, offset32(&SPUThread::jit_dispatcher) + target * 2));
c->xor_(qw0->r32(), qw0->r32());
c->jmp(x86::rax);
c->align(kAlignCode, 8);
c->dq(reinterpret_cast<u64>(&*result.first));
c->dq(reinterpret_cast<u64>(result.first->second));
}
void spu_recompiler::branch_indirect(spu_opcode_t op)