Merge branch 'refs/heads/main' into loadaudio

This commit is contained in:
goeiecool9999 2024-10-14 20:58:50 +02:00
commit 8ee95545e6
21 changed files with 243 additions and 185 deletions

View file

@ -222,7 +222,7 @@ if (ENABLE_CUBEB)
option(BUILD_TOOLS "" OFF) option(BUILD_TOOLS "" OFF)
option(BUNDLE_SPEEX "" OFF) option(BUNDLE_SPEEX "" OFF)
set(USE_WINMM OFF CACHE BOOL "") set(USE_WINMM OFF CACHE BOOL "")
add_subdirectory("dependencies/cubeb" EXCLUDE_FROM_ALL) add_subdirectory("dependencies/cubeb" EXCLUDE_FROM_ALL SYSTEM)
set_property(TARGET cubeb PROPERTY MSVC_RUNTIME_LIBRARY "MultiThreaded$<$<CONFIG:Debug>:Debug>") set_property(TARGET cubeb PROPERTY MSVC_RUNTIME_LIBRARY "MultiThreaded$<$<CONFIG:Debug>:Debug>")
add_library(cubeb::cubeb ALIAS cubeb) add_library(cubeb::cubeb ALIAS cubeb)
endif() endif()

View file

@ -1892,6 +1892,7 @@ void VulkanRenderer::ProcessFinishedCommandBuffers()
if (fenceStatus == VK_SUCCESS) if (fenceStatus == VK_SUCCESS)
{ {
ProcessDestructionQueue(); ProcessDestructionQueue();
m_uniformVarBufferReadIndex = m_cmdBufferUniformRingbufIndices[m_commandBufferSyncIndex];
m_commandBufferSyncIndex = (m_commandBufferSyncIndex + 1) % m_commandBuffers.size(); m_commandBufferSyncIndex = (m_commandBufferSyncIndex + 1) % m_commandBuffers.size();
memoryManager->cleanupBuffers(m_countCommandBufferFinished); memoryManager->cleanupBuffers(m_countCommandBufferFinished);
m_countCommandBufferFinished++; m_countCommandBufferFinished++;
@ -1985,6 +1986,7 @@ void VulkanRenderer::SubmitCommandBuffer(VkSemaphore signalSemaphore, VkSemaphor
cemuLog_logDebug(LogType::Force, "Vulkan: Waiting for available command buffer..."); cemuLog_logDebug(LogType::Force, "Vulkan: Waiting for available command buffer...");
WaitForNextFinishedCommandBuffer(); WaitForNextFinishedCommandBuffer();
} }
m_cmdBufferUniformRingbufIndices[nextCmdBufferIndex] = m_cmdBufferUniformRingbufIndices[m_commandBufferIndex];
m_commandBufferIndex = nextCmdBufferIndex; m_commandBufferIndex = nextCmdBufferIndex;
@ -3562,13 +3564,13 @@ void VulkanRenderer::buffer_bindUniformBuffer(LatteConst::ShaderType shaderType,
switch (shaderType) switch (shaderType)
{ {
case LatteConst::ShaderType::Vertex: case LatteConst::ShaderType::Vertex:
dynamicOffsetInfo.shaderUB[VulkanRendererConst::SHADER_STAGE_INDEX_VERTEX].unformBufferOffset[bufferIndex] = offset; dynamicOffsetInfo.shaderUB[VulkanRendererConst::SHADER_STAGE_INDEX_VERTEX].uniformBufferOffset[bufferIndex] = offset;
break; break;
case LatteConst::ShaderType::Geometry: case LatteConst::ShaderType::Geometry:
dynamicOffsetInfo.shaderUB[VulkanRendererConst::SHADER_STAGE_INDEX_GEOMETRY].unformBufferOffset[bufferIndex] = offset; dynamicOffsetInfo.shaderUB[VulkanRendererConst::SHADER_STAGE_INDEX_GEOMETRY].uniformBufferOffset[bufferIndex] = offset;
break; break;
case LatteConst::ShaderType::Pixel: case LatteConst::ShaderType::Pixel:
dynamicOffsetInfo.shaderUB[VulkanRendererConst::SHADER_STAGE_INDEX_FRAGMENT].unformBufferOffset[bufferIndex] = offset; dynamicOffsetInfo.shaderUB[VulkanRendererConst::SHADER_STAGE_INDEX_FRAGMENT].uniformBufferOffset[bufferIndex] = offset;
break; break;
default: default:
cemu_assert_debug(false); cemu_assert_debug(false);

View file

@ -591,6 +591,7 @@ private:
bool m_uniformVarBufferMemoryIsCoherent{false}; bool m_uniformVarBufferMemoryIsCoherent{false};
uint8* m_uniformVarBufferPtr = nullptr; uint8* m_uniformVarBufferPtr = nullptr;
uint32 m_uniformVarBufferWriteIndex = 0; uint32 m_uniformVarBufferWriteIndex = 0;
uint32 m_uniformVarBufferReadIndex = 0;
// transform feedback ringbuffer // transform feedback ringbuffer
VkBuffer m_xfbRingBuffer = VK_NULL_HANDLE; VkBuffer m_xfbRingBuffer = VK_NULL_HANDLE;
@ -637,6 +638,7 @@ private:
size_t m_commandBufferIndex = 0; // current buffer being filled size_t m_commandBufferIndex = 0; // current buffer being filled
size_t m_commandBufferSyncIndex = 0; // latest buffer that finished execution (updated on submit) size_t m_commandBufferSyncIndex = 0; // latest buffer that finished execution (updated on submit)
size_t m_commandBufferIDOfPrevFrame = 0; size_t m_commandBufferIDOfPrevFrame = 0;
std::array<size_t, kCommandBufferPoolSize> m_cmdBufferUniformRingbufIndices {}; // index in the uniform ringbuffer
std::array<VkFence, kCommandBufferPoolSize> m_cmd_buffer_fences; std::array<VkFence, kCommandBufferPoolSize> m_cmd_buffer_fences;
std::array<VkCommandBuffer, kCommandBufferPoolSize> m_commandBuffers; std::array<VkCommandBuffer, kCommandBufferPoolSize> m_commandBuffers;
std::array<VkSemaphore, kCommandBufferPoolSize> m_commandBufferSemaphores; std::array<VkSemaphore, kCommandBufferPoolSize> m_commandBufferSemaphores;
@ -659,7 +661,7 @@ private:
uint32 uniformVarBufferOffset[VulkanRendererConst::SHADER_STAGE_INDEX_COUNT]; uint32 uniformVarBufferOffset[VulkanRendererConst::SHADER_STAGE_INDEX_COUNT];
struct struct
{ {
uint32 unformBufferOffset[LATTE_NUM_MAX_UNIFORM_BUFFERS]; uint32 uniformBufferOffset[LATTE_NUM_MAX_UNIFORM_BUFFERS];
}shaderUB[VulkanRendererConst::SHADER_STAGE_INDEX_COUNT]; }shaderUB[VulkanRendererConst::SHADER_STAGE_INDEX_COUNT];
}dynamicOffsetInfo{}; }dynamicOffsetInfo{};

View file

@ -375,24 +375,20 @@ float s_vkUniformData[512 * 4];
void VulkanRenderer::uniformData_updateUniformVars(uint32 shaderStageIndex, LatteDecompilerShader* shader) void VulkanRenderer::uniformData_updateUniformVars(uint32 shaderStageIndex, LatteDecompilerShader* shader)
{ {
auto GET_UNIFORM_DATA_PTR = [&](size_t index) { return s_vkUniformData + (index / 4); }; auto GET_UNIFORM_DATA_PTR = [](size_t index) { return s_vkUniformData + (index / 4); };
sint32 shaderAluConst; sint32 shaderAluConst;
sint32 shaderUniformRegisterOffset;
switch (shader->shaderType) switch (shader->shaderType)
{ {
case LatteConst::ShaderType::Vertex: case LatteConst::ShaderType::Vertex:
shaderAluConst = 0x400; shaderAluConst = 0x400;
shaderUniformRegisterOffset = mmSQ_VTX_UNIFORM_BLOCK_START;
break; break;
case LatteConst::ShaderType::Pixel: case LatteConst::ShaderType::Pixel:
shaderAluConst = 0; shaderAluConst = 0;
shaderUniformRegisterOffset = mmSQ_PS_UNIFORM_BLOCK_START;
break; break;
case LatteConst::ShaderType::Geometry: case LatteConst::ShaderType::Geometry:
shaderAluConst = 0; // geometry shader has no ALU const shaderAluConst = 0; // geometry shader has no ALU const
shaderUniformRegisterOffset = mmSQ_GS_UNIFORM_BLOCK_START;
break; break;
default: default:
UNREACHABLE; UNREACHABLE;
@ -445,7 +441,7 @@ void VulkanRenderer::uniformData_updateUniformVars(uint32 shaderStageIndex, Latt
} }
if (shader->uniform.loc_verticesPerInstance >= 0) if (shader->uniform.loc_verticesPerInstance >= 0)
{ {
*(int*)(s_vkUniformData + ((size_t)shader->uniform.loc_verticesPerInstance / 4)) = m_streamoutState.verticesPerInstance; *(int*)GET_UNIFORM_DATA_PTR(shader->uniform.loc_verticesPerInstance) = m_streamoutState.verticesPerInstance;
for (sint32 b = 0; b < LATTE_NUM_STREAMOUT_BUFFER; b++) for (sint32 b = 0; b < LATTE_NUM_STREAMOUT_BUFFER; b++)
{ {
if (shader->uniform.loc_streamoutBufferBase[b] >= 0) if (shader->uniform.loc_streamoutBufferBase[b] >= 0)
@ -455,26 +451,63 @@ void VulkanRenderer::uniformData_updateUniformVars(uint32 shaderStageIndex, Latt
} }
} }
// upload // upload
if ((m_uniformVarBufferWriteIndex + shader->uniform.uniformRangeSize + 1024) > UNIFORMVAR_RINGBUFFER_SIZE) const uint32 bufferAlignmentM1 = std::max(m_featureControl.limits.minUniformBufferOffsetAlignment, m_featureControl.limits.nonCoherentAtomSize) - 1;
const uint32 uniformSize = (shader->uniform.uniformRangeSize + bufferAlignmentM1) & ~bufferAlignmentM1;
auto waitWhileCondition = [&](std::function<bool()> condition) {
while (condition())
{
if (m_commandBufferSyncIndex == m_commandBufferIndex)
{
if (m_cmdBufferUniformRingbufIndices[m_commandBufferIndex] != m_uniformVarBufferReadIndex)
{
draw_endRenderPass();
SubmitCommandBuffer();
}
else
{
// submitting work would not change readIndex, so there's no way for conditions based on it to change
cemuLog_log(LogType::Force, "draw call overflowed and corrupted uniform ringbuffer. expect visual corruption");
cemu_assert_suspicious();
break;
}
}
WaitForNextFinishedCommandBuffer();
}
};
// wrap around if it doesnt fit consecutively
if (m_uniformVarBufferWriteIndex + uniformSize > UNIFORMVAR_RINGBUFFER_SIZE)
{ {
waitWhileCondition([&]() {
return m_uniformVarBufferReadIndex > m_uniformVarBufferWriteIndex || m_uniformVarBufferReadIndex == 0;
});
m_uniformVarBufferWriteIndex = 0; m_uniformVarBufferWriteIndex = 0;
} }
uint32 bufferAlignmentM1 = std::max(m_featureControl.limits.minUniformBufferOffsetAlignment, m_featureControl.limits.nonCoherentAtomSize) - 1;
auto ringBufRemaining = [&]() {
ssize_t ringBufferUsedBytes = (ssize_t)m_uniformVarBufferWriteIndex - m_uniformVarBufferReadIndex;
if (ringBufferUsedBytes < 0)
ringBufferUsedBytes += UNIFORMVAR_RINGBUFFER_SIZE;
return UNIFORMVAR_RINGBUFFER_SIZE - 1 - ringBufferUsedBytes;
};
waitWhileCondition([&]() {
return ringBufRemaining() < uniformSize;
});
const uint32 uniformOffset = m_uniformVarBufferWriteIndex; const uint32 uniformOffset = m_uniformVarBufferWriteIndex;
memcpy(m_uniformVarBufferPtr + uniformOffset, s_vkUniformData, shader->uniform.uniformRangeSize); memcpy(m_uniformVarBufferPtr + uniformOffset, s_vkUniformData, shader->uniform.uniformRangeSize);
m_uniformVarBufferWriteIndex += shader->uniform.uniformRangeSize; m_uniformVarBufferWriteIndex += uniformSize;
m_uniformVarBufferWriteIndex = (m_uniformVarBufferWriteIndex + bufferAlignmentM1) & ~bufferAlignmentM1;
// update dynamic offset // update dynamic offset
dynamicOffsetInfo.uniformVarBufferOffset[shaderStageIndex] = uniformOffset; dynamicOffsetInfo.uniformVarBufferOffset[shaderStageIndex] = uniformOffset;
// flush if not coherent // flush if not coherent
if (!m_uniformVarBufferMemoryIsCoherent) if (!m_uniformVarBufferMemoryIsCoherent)
{ {
uint32 nonCoherentAtomSizeM1 = m_featureControl.limits.nonCoherentAtomSize - 1;
VkMappedMemoryRange flushedRange{}; VkMappedMemoryRange flushedRange{};
flushedRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; flushedRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
flushedRange.memory = m_uniformVarBufferMemory; flushedRange.memory = m_uniformVarBufferMemory;
flushedRange.offset = uniformOffset; flushedRange.offset = uniformOffset;
flushedRange.size = (shader->uniform.uniformRangeSize + nonCoherentAtomSizeM1) & ~nonCoherentAtomSizeM1; flushedRange.size = uniformSize;
vkFlushMappedMemoryRanges(m_logicalDevice, 1, &flushedRange); vkFlushMappedMemoryRanges(m_logicalDevice, 1, &flushedRange);
} }
} }
@ -494,7 +527,7 @@ void VulkanRenderer::draw_prepareDynamicOffsetsForDescriptorSet(uint32 shaderSta
{ {
for (auto& itr : pipeline_info->dynamicOffsetInfo.list_uniformBuffers[shaderStageIndex]) for (auto& itr : pipeline_info->dynamicOffsetInfo.list_uniformBuffers[shaderStageIndex])
{ {
dynamicOffsets[numDynOffsets] = dynamicOffsetInfo.shaderUB[shaderStageIndex].unformBufferOffset[itr]; dynamicOffsets[numDynOffsets] = dynamicOffsetInfo.shaderUB[shaderStageIndex].uniformBufferOffset[itr];
numDynOffsets++; numDynOffsets++;
} }
} }
@ -1357,6 +1390,24 @@ void VulkanRenderer::draw_execute(uint32 baseVertex, uint32 baseInstance, uint32
return; return;
} }
// prepare streamout
m_streamoutState.verticesPerInstance = count;
LatteStreamout_PrepareDrawcall(count, instanceCount);
// update uniform vars
LatteDecompilerShader* vertexShader = LatteSHRC_GetActiveVertexShader();
LatteDecompilerShader* pixelShader = LatteSHRC_GetActivePixelShader();
LatteDecompilerShader* geometryShader = LatteSHRC_GetActiveGeometryShader();
if (vertexShader)
uniformData_updateUniformVars(VulkanRendererConst::SHADER_STAGE_INDEX_VERTEX, vertexShader);
if (pixelShader)
uniformData_updateUniformVars(VulkanRendererConst::SHADER_STAGE_INDEX_FRAGMENT, pixelShader);
if (geometryShader)
uniformData_updateUniformVars(VulkanRendererConst::SHADER_STAGE_INDEX_GEOMETRY, geometryShader);
// store where the read pointer should go after command buffer execution
m_cmdBufferUniformRingbufIndices[m_commandBufferIndex] = m_uniformVarBufferWriteIndex;
// process index data // process index data
const LattePrimitiveMode primitiveMode = static_cast<LattePrimitiveMode>(LatteGPUState.contextRegister[mmVGT_PRIMITIVE_TYPE]); const LattePrimitiveMode primitiveMode = static_cast<LattePrimitiveMode>(LatteGPUState.contextRegister[mmVGT_PRIMITIVE_TYPE]);
@ -1410,22 +1461,6 @@ void VulkanRenderer::draw_execute(uint32 baseVertex, uint32 baseInstance, uint32
LatteBufferCache_Sync(indexMin + baseVertex, indexMax + baseVertex, baseInstance, instanceCount); LatteBufferCache_Sync(indexMin + baseVertex, indexMax + baseVertex, baseInstance, instanceCount);
} }
// prepare streamout
m_streamoutState.verticesPerInstance = count;
LatteStreamout_PrepareDrawcall(count, instanceCount);
// update uniform vars
LatteDecompilerShader* vertexShader = LatteSHRC_GetActiveVertexShader();
LatteDecompilerShader* pixelShader = LatteSHRC_GetActivePixelShader();
LatteDecompilerShader* geometryShader = LatteSHRC_GetActiveGeometryShader();
if (vertexShader)
uniformData_updateUniformVars(VulkanRendererConst::SHADER_STAGE_INDEX_VERTEX, vertexShader);
if (pixelShader)
uniformData_updateUniformVars(VulkanRendererConst::SHADER_STAGE_INDEX_FRAGMENT, pixelShader);
if (geometryShader)
uniformData_updateUniformVars(VulkanRendererConst::SHADER_STAGE_INDEX_GEOMETRY, geometryShader);
PipelineInfo* pipeline_info; PipelineInfo* pipeline_info;
if (!isFirst) if (!isFirst)
@ -1613,13 +1648,13 @@ void VulkanRenderer::draw_updateUniformBuffersDirectAccess(LatteDecompilerShader
switch (shaderType) switch (shaderType)
{ {
case LatteConst::ShaderType::Vertex: case LatteConst::ShaderType::Vertex:
dynamicOffsetInfo.shaderUB[VulkanRendererConst::SHADER_STAGE_INDEX_VERTEX].unformBufferOffset[bufferIndex] = physicalAddr - m_importedMemBaseAddress; dynamicOffsetInfo.shaderUB[VulkanRendererConst::SHADER_STAGE_INDEX_VERTEX].uniformBufferOffset[bufferIndex] = physicalAddr - m_importedMemBaseAddress;
break; break;
case LatteConst::ShaderType::Geometry: case LatteConst::ShaderType::Geometry:
dynamicOffsetInfo.shaderUB[VulkanRendererConst::SHADER_STAGE_INDEX_GEOMETRY].unformBufferOffset[bufferIndex] = physicalAddr - m_importedMemBaseAddress; dynamicOffsetInfo.shaderUB[VulkanRendererConst::SHADER_STAGE_INDEX_GEOMETRY].uniformBufferOffset[bufferIndex] = physicalAddr - m_importedMemBaseAddress;
break; break;
case LatteConst::ShaderType::Pixel: case LatteConst::ShaderType::Pixel:
dynamicOffsetInfo.shaderUB[VulkanRendererConst::SHADER_STAGE_INDEX_FRAGMENT].unformBufferOffset[bufferIndex] = physicalAddr - m_importedMemBaseAddress; dynamicOffsetInfo.shaderUB[VulkanRendererConst::SHADER_STAGE_INDEX_FRAGMENT].uniformBufferOffset[bufferIndex] = physicalAddr - m_importedMemBaseAddress;
break; break;
default: default:
UNREACHABLE; UNREACHABLE;

View file

@ -137,6 +137,10 @@ namespace iosu
this->task_settings.taskType = settings->taskType; this->task_settings.taskType = settings->taskType;
curl = std::shared_ptr<CURL>(curl_easy_init(), curl_easy_cleanup); curl = std::shared_ptr<CURL>(curl_easy_init(), curl_easy_cleanup);
if(GetConfig().proxy_server.GetValue() != "")
{
curl_easy_setopt(curl.get(), CURLOPT_PROXY, GetConfig().proxy_server.GetValue().c_str());
}
} }
}; };

View file

@ -112,7 +112,7 @@ namespace nn
nnResult _Async_OfflineDB_DownloadPostDataListParam_DownloadPostDataList(coreinit::OSEvent* event, DownloadedTopicData* downloadedTopicData, DownloadedPostData* downloadedPostData, uint32be* postCountOut, uint32 maxCount, DownloadPostDataListParam* param) nnResult _Async_OfflineDB_DownloadPostDataListParam_DownloadPostDataList(coreinit::OSEvent* event, DownloadedTopicData* downloadedTopicData, DownloadedPostData* downloadedPostData, uint32be* postCountOut, uint32 maxCount, DownloadPostDataListParam* param)
{ {
scope_exit _se([&](){coreinit::OSSignalEvent(event);}); stdx::scope_exit _se([&](){coreinit::OSSignalEvent(event);});
uint64 titleId = CafeSystem::GetForegroundTitleId(); uint64 titleId = CafeSystem::GetForegroundTitleId();
@ -184,7 +184,7 @@ namespace nn
nnResult _Async_OfflineDB_DownloadPostDataListParam_DownloadExternalImageData(coreinit::OSEvent* event, DownloadedDataBase* _this, void* imageDataOut, uint32be* imageSizeOut, uint32 maxSize) nnResult _Async_OfflineDB_DownloadPostDataListParam_DownloadExternalImageData(coreinit::OSEvent* event, DownloadedDataBase* _this, void* imageDataOut, uint32be* imageSizeOut, uint32 maxSize)
{ {
scope_exit _se([&](){coreinit::OSSignalEvent(event);}); stdx::scope_exit _se([&](){coreinit::OSSignalEvent(event);});
if (!_this->TestFlags(_this, DownloadedDataBase::FLAGS::HAS_EXTERNAL_IMAGE)) if (!_this->TestFlags(_this, DownloadedDataBase::FLAGS::HAS_EXTERNAL_IMAGE))
return OLV_RESULT_MISSING_DATA; return OLV_RESULT_MISSING_DATA;

View file

@ -1017,11 +1017,7 @@ namespace nsyshid
std::array<uint8, 16> InfinityUSB::GenerateInfinityFigureKey(const std::vector<uint8>& sha1Data) std::array<uint8, 16> InfinityUSB::GenerateInfinityFigureKey(const std::vector<uint8>& sha1Data)
{ {
std::array<uint8, 20> digest = {}; std::array<uint8, 20> digest = {};
SHA_CTX ctx; SHA1(sha1Data.data(), sha1Data.size(), digest.data());
SHA1_Init(&ctx);
SHA1_Update(&ctx, sha1Data.data(), sha1Data.size());
SHA1_Final(digest.data(), &ctx);
OPENSSL_cleanse(&ctx, sizeof(ctx));
// Infinity AES keys are the first 16 bytes of the SHA1 Digest, every set of 4 bytes need to be // Infinity AES keys are the first 16 bytes of the SHA1 Digest, every set of 4 bytes need to be
// reversed due to endianness // reversed due to endianness
std::array<uint8, 16> key = {}; std::array<uint8, 16> key = {};

View file

@ -509,7 +509,7 @@ namespace ntag
noftHeader->writeCount = _swapEndianU16(_swapEndianU16(noftHeader->writeCount) + 1); noftHeader->writeCount = _swapEndianU16(_swapEndianU16(noftHeader->writeCount) + 1);
} }
memcpy(decryptedBuffer + 0x20, noftHeader, sizeof(noftHeader)); memcpy(decryptedBuffer + 0x20, noftHeader, sizeof(NTAGNoftHeader));
memcpy(decryptedBuffer + _swapEndianU16(rwHeader->offset), data, dataSize); memcpy(decryptedBuffer + _swapEndianU16(rwHeader->offset), data, dataSize);
// Encrypt // Encrypt

View file

@ -467,10 +467,10 @@ namespace snd_core
// called periodically to check for AX updates // called periodically to check for AX updates
void AXOut_update() void AXOut_update()
{ {
constexpr auto kTimeout = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::milliseconds(((IAudioAPI::kBlockCount * 3) / 4) * (AX_FRAMES_PER_GROUP * 3))); constexpr static auto kTimeout = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::milliseconds(((IAudioAPI::kBlockCount * 3) / 4) * (AX_FRAMES_PER_GROUP * 3)));
constexpr auto kWaitDuration = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::milliseconds(3)); constexpr static auto kWaitDuration = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::milliseconds(3));
constexpr auto kWaitDurationFast = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::microseconds(2900)); constexpr static auto kWaitDurationFast = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::microseconds(2900));
constexpr auto kWaitDurationMinimum = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::microseconds(1700)); constexpr static auto kWaitDurationMinimum = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::microseconds(1700));
// if we haven't buffered any blocks, we will wait less time than usual // if we haven't buffered any blocks, we will wait less time than usual
bool additional_blocks_required = false; bool additional_blocks_required = false;

View file

@ -91,7 +91,11 @@ bool cemuLog_log(LogType type, std::basic_string<T> formatStr, TArgs&&... args)
else else
{ {
const auto format_view = fmt::basic_string_view<T>(formatStr); const auto format_view = fmt::basic_string_view<T>(formatStr);
#if FMT_VERSION >= 110000
const auto text = fmt::vformat(format_view, fmt::make_format_args<fmt::buffered_context<T>>(args...));
#else
const auto text = fmt::vformat(format_view, fmt::make_format_args<fmt::buffer_context<T>>(args...)); const auto text = fmt::vformat(format_view, fmt::make_format_args<fmt::buffer_context<T>>(args...));
#endif
cemuLog_log(type, std::basic_string_view(text.data(), text.size())); cemuLog_log(type, std::basic_string_view(text.data(), text.size()));
} }
return true; return true;

View file

@ -4,7 +4,7 @@
using MPTR = uint32; // generic address in PowerPC memory space using MPTR = uint32; // generic address in PowerPC memory space
#define MPTR_NULL (0) #define MPTR_NULL (0)
using VAddr = uint32; // virtual address using VAddr = uint32; // virtual address
using PAddr = uint32; // physical address using PAddr = uint32; // physical address
@ -14,137 +14,175 @@ extern uint8* PPCInterpreterGetStackPointer();
extern uint8* PPCInterpreter_PushAndReturnStackPointer(sint32 offset); extern uint8* PPCInterpreter_PushAndReturnStackPointer(sint32 offset);
extern void PPCInterpreterModifyStackPointer(sint32 offset); extern void PPCInterpreterModifyStackPointer(sint32 offset);
class MEMPTRBase {}; class MEMPTRBase
{
};
template <typename T> template<typename T>
class MEMPTR : MEMPTRBase class MEMPTR : MEMPTRBase
{ {
public: public:
constexpr MEMPTR() constexpr MEMPTR() noexcept
: m_value(0) { } : m_value(0) {}
explicit constexpr MEMPTR(uint32 offset) explicit constexpr MEMPTR(uint32 offset) noexcept
: m_value(offset) { } : m_value(offset) {}
explicit constexpr MEMPTR(const uint32be& offset) explicit constexpr MEMPTR(const uint32be& offset) noexcept
: m_value(offset) { } : m_value(offset) {}
constexpr MEMPTR(std::nullptr_t) constexpr MEMPTR(std::nullptr_t) noexcept
: m_value(0) { } : m_value(0) {}
MEMPTR(T* ptr) MEMPTR(T* ptr) noexcept
{ {
if (ptr == nullptr) if (ptr == nullptr)
m_value = 0; m_value = 0;
else else
{ {
cemu_assert_debug((uint8*)ptr >= memory_base && (uint8*)ptr <= memory_base + 0x100000000); cemu_assert_debug((uint8*)ptr >= memory_base && (uint8*)ptr <= memory_base + 0x100000000);
m_value = (uint32)((uintptr_t)ptr - (uintptr_t)memory_base); m_value = (uint32)((uintptr_t)ptr - (uintptr_t)memory_base);
} }
} }
constexpr MEMPTR(const MEMPTR& memptr) constexpr MEMPTR(const MEMPTR&) noexcept = default;
: m_value(memptr.m_value) { }
constexpr MEMPTR& operator=(const MEMPTR& memptr) constexpr MEMPTR& operator=(const MEMPTR&) noexcept = default;
{
m_value = memptr.m_value;
return *this;
}
constexpr MEMPTR& operator=(const uint32& offset) constexpr MEMPTR& operator=(const uint32& offset) noexcept
{ {
m_value = offset; m_value = offset;
return *this; return *this;
} }
constexpr MEMPTR& operator=(const std::nullptr_t rhs) constexpr MEMPTR& operator=(std::nullptr_t) noexcept
{ {
m_value = 0; m_value = 0;
return *this; return *this;
} }
MEMPTR& operator=(T* ptr) MEMPTR& operator=(T* ptr) noexcept
{ {
if (ptr == nullptr) if (ptr == nullptr)
m_value = 0; m_value = 0;
else else
{ {
cemu_assert_debug((uint8*)ptr >= memory_base && (uint8*)ptr <= memory_base + 0x100000000); cemu_assert_debug((uint8*)ptr >= memory_base && (uint8*)ptr <= memory_base + 0x100000000);
m_value = (uint32)((uintptr_t)ptr - (uintptr_t)memory_base); m_value = (uint32)((uintptr_t)ptr - (uintptr_t)memory_base);
} }
return *this; return *this;
} }
bool atomic_compare_exchange(T* comparePtr, T* newPtr) bool atomic_compare_exchange(T* comparePtr, T* newPtr) noexcept
{ {
MEMPTR<T> mp_compare = comparePtr; MEMPTR<T> mp_compare = comparePtr;
MEMPTR<T> mp_new = newPtr; MEMPTR<T> mp_new = newPtr;
std::atomic<uint32be>* thisValueAtomic = (std::atomic<uint32be>*)&m_value; auto* thisValueAtomic = reinterpret_cast<std::atomic<uint32be>*>(&m_value);
return thisValueAtomic->compare_exchange_strong(mp_compare.m_value, mp_new.m_value); return thisValueAtomic->compare_exchange_strong(mp_compare.m_value, mp_new.m_value);
} }
explicit constexpr operator bool() const noexcept { return m_value != 0; } explicit constexpr operator bool() const noexcept
{
constexpr operator T*() const noexcept { return GetPtr(); } // allow implicit cast to wrapped pointer type return m_value != 0;
}
// allow implicit cast to wrapped pointer type
constexpr operator T*() const noexcept
{
return GetPtr();
}
template <typename X> template<typename X>
explicit operator MEMPTR<X>() const { return MEMPTR<X>(this->m_value); } explicit operator MEMPTR<X>() const noexcept
{
return MEMPTR<X>(this->m_value);
}
MEMPTR operator+(const MEMPTR& ptr) { return MEMPTR(this->GetMPTR() + ptr.GetMPTR()); } MEMPTR operator+(const MEMPTR& ptr) noexcept
MEMPTR operator-(const MEMPTR& ptr) { return MEMPTR(this->GetMPTR() - ptr.GetMPTR()); } {
return MEMPTR(this->GetMPTR() + ptr.GetMPTR());
}
MEMPTR operator-(const MEMPTR& ptr) noexcept
{
return MEMPTR(this->GetMPTR() - ptr.GetMPTR());
}
MEMPTR operator+(sint32 v) MEMPTR operator+(sint32 v) noexcept
{ {
// pointer arithmetic // pointer arithmetic
return MEMPTR(this->GetMPTR() + v * 4); return MEMPTR(this->GetMPTR() + v * 4);
} }
MEMPTR operator-(sint32 v) MEMPTR operator-(sint32 v) noexcept
{ {
// pointer arithmetic // pointer arithmetic
return MEMPTR(this->GetMPTR() - v * 4); return MEMPTR(this->GetMPTR() - v * 4);
} }
MEMPTR& operator+=(sint32 v) MEMPTR& operator+=(sint32 v) noexcept
{ {
m_value += v * sizeof(T); m_value += v * sizeof(T);
return *this; return *this;
} }
template <class Q = T> template<typename Q = T>
typename std::enable_if<!std::is_same<Q, void>::value, Q>::type& std::enable_if_t<!std::is_same_v<Q, void>, Q>& operator*() const noexcept
operator*() const { return *GetPtr(); } {
return *GetPtr();
}
T* operator->() const { return GetPtr(); } constexpr T* operator->() const noexcept
{
return GetPtr();
}
template <class Q = T> template<typename Q = T>
typename std::enable_if<!std::is_same<Q, void>::value, Q>::type& std::enable_if_t<!std::is_same_v<Q, void>, Q>& operator[](int index) noexcept
operator[](int index) { return GetPtr()[index]; } {
return GetPtr()[index];
}
T* GetPtr() const { return (T*)(m_value == 0 ? nullptr : memory_base + (uint32)m_value); } T* GetPtr() const noexcept
{
return (T*)(m_value == 0 ? nullptr : memory_base + (uint32)m_value);
}
template <typename C> template<typename C>
C* GetPtr() const { return (C*)(GetPtr()); } C* GetPtr() const noexcept
{
return static_cast<C*>(GetPtr());
}
constexpr uint32 GetMPTR() const { return m_value.value(); } [[nodiscard]] constexpr uint32 GetMPTR() const noexcept
constexpr const uint32be& GetBEValue() const { return m_value; } {
return m_value.value();
}
[[nodiscard]] constexpr const uint32be& GetBEValue() const noexcept
{
return m_value;
}
constexpr bool IsNull() const { return m_value == 0; } [[nodiscard]] constexpr bool IsNull() const noexcept
{
return m_value == 0;
}
private: private:
uint32be m_value; uint32be m_value;
}; };
static_assert(sizeof(MEMPTR<void*>) == sizeof(uint32be)); static_assert(sizeof(MEMPTR<void*>) == sizeof(uint32be));
static_assert(std::is_trivially_copyable_v<MEMPTR<void*>>);
#include "StackAllocator.h" #include "StackAllocator.h"
#include "SysAllocator.h" #include "SysAllocator.h"
template <typename T> template<typename T>
struct fmt::formatter<MEMPTR<T>> : formatter<string_view> struct fmt::formatter<MEMPTR<T>> : formatter<string_view>
{ {
template <typename FormatContext> template<typename FormatContext>
auto format(const MEMPTR<T>& v, FormatContext& ctx) const -> format_context::iterator { return fmt::format_to(ctx.out(), "{:#x}", v.GetMPTR()); } auto format(const MEMPTR<T>& v, FormatContext& ctx) const -> format_context::iterator
{
return fmt::format_to(ctx.out(), "{:#x}", v.GetMPTR());
}
}; };

View file

@ -394,16 +394,10 @@ void vectorRemoveByIndex(std::vector<T>& vec, const size_t index)
vec.erase(vec.begin() + index); vec.erase(vec.begin() + index);
} }
template<typename T1, typename T2> template<typename T1, typename... Types>
int match_any_of(T1 value, T2 compareTo) bool match_any_of(T1&& value, Types&&... others)
{ {
return value == compareTo; return ((value == others) || ...);
}
template<typename T1, typename T2, typename... Types>
bool match_any_of(T1 value, T2 compareTo, Types&&... others)
{
return value == compareTo || match_any_of(value, others...);
} }
// we cache the frequency in a static variable // we cache the frequency in a static variable
@ -501,13 +495,6 @@ bool future_is_ready(std::future<T>& f)
#endif #endif
} }
// replace with std::scope_exit once available
struct scope_exit
{
std::function<void()> f_;
explicit scope_exit(std::function<void()> f) noexcept : f_(std::move(f)) {}
~scope_exit() { if (f_) f_(); }
};
// helper function to cast raw pointers to std::atomic // helper function to cast raw pointers to std::atomic
// this is technically not legal but works on most platforms as long as alignment restrictions are met and the implementation of atomic doesnt come with additional members // this is technically not legal but works on most platforms as long as alignment restrictions are met and the implementation of atomic doesnt come with additional members
@ -515,6 +502,8 @@ struct scope_exit
template<typename T> template<typename T>
std::atomic<T>* _rawPtrToAtomic(T* ptr) std::atomic<T>* _rawPtrToAtomic(T* ptr)
{ {
static_assert(sizeof(T) == sizeof(std::atomic<T>));
cemu_assert_debug((reinterpret_cast<std::uintptr_t>(ptr) % alignof(std::atomic<T>)) == 0);
return reinterpret_cast<std::atomic<T>*>(ptr); return reinterpret_cast<std::atomic<T>*>(ptr);
} }
@ -578,13 +567,34 @@ struct fmt::formatter<betype<T>> : fmt::formatter<T>
} }
}; };
// useful C++23 stuff that isn't yet widely supported // useful future C++ stuff
// std::to_underlying
namespace stdx namespace stdx
{ {
// std::to_underlying
template <typename EnumT, typename = std::enable_if_t < std::is_enum<EnumT>{} >> template <typename EnumT, typename = std::enable_if_t < std::is_enum<EnumT>{} >>
constexpr std::underlying_type_t<EnumT> to_underlying(EnumT e) noexcept { constexpr std::underlying_type_t<EnumT> to_underlying(EnumT e) noexcept {
return static_cast<std::underlying_type_t<EnumT>>(e); return static_cast<std::underlying_type_t<EnumT>>(e);
}; };
// std::scope_exit
template <typename Fn>
class scope_exit
{
Fn m_func;
bool m_released = false;
public:
explicit scope_exit(Fn&& f) noexcept
: m_func(std::forward<Fn>(f))
{}
~scope_exit()
{
if (!m_released) m_func();
}
scope_exit(scope_exit&& other) noexcept
: m_func(std::move(other.m_func)), m_released(std::exchange(other.m_released, true))
{}
scope_exit(const scope_exit&) = delete;
scope_exit& operator=(scope_exit) = delete;
void release() { m_released = true;}
};
} }

View file

@ -194,7 +194,7 @@ ENABLE_ENUM_ITERATORS(CrashDump, CrashDump::Disabled, CrashDump::Enabled);
template <> template <>
struct fmt::formatter<PrecompiledShaderOption> : formatter<string_view> { struct fmt::formatter<PrecompiledShaderOption> : formatter<string_view> {
template <typename FormatContext> template <typename FormatContext>
auto format(const PrecompiledShaderOption c, FormatContext &ctx) { auto format(const PrecompiledShaderOption c, FormatContext &ctx) const {
string_view name; string_view name;
switch (c) switch (c)
{ {
@ -209,7 +209,7 @@ struct fmt::formatter<PrecompiledShaderOption> : formatter<string_view> {
template <> template <>
struct fmt::formatter<AccurateShaderMulOption> : formatter<string_view> { struct fmt::formatter<AccurateShaderMulOption> : formatter<string_view> {
template <typename FormatContext> template <typename FormatContext>
auto format(const AccurateShaderMulOption c, FormatContext &ctx) { auto format(const AccurateShaderMulOption c, FormatContext &ctx) const {
string_view name; string_view name;
switch (c) switch (c)
{ {
@ -223,7 +223,7 @@ struct fmt::formatter<AccurateShaderMulOption> : formatter<string_view> {
template <> template <>
struct fmt::formatter<CPUMode> : formatter<string_view> { struct fmt::formatter<CPUMode> : formatter<string_view> {
template <typename FormatContext> template <typename FormatContext>
auto format(const CPUMode c, FormatContext &ctx) { auto format(const CPUMode c, FormatContext &ctx) const {
string_view name; string_view name;
switch (c) switch (c)
{ {
@ -240,7 +240,7 @@ struct fmt::formatter<CPUMode> : formatter<string_view> {
template <> template <>
struct fmt::formatter<CPUModeLegacy> : formatter<string_view> { struct fmt::formatter<CPUModeLegacy> : formatter<string_view> {
template <typename FormatContext> template <typename FormatContext>
auto format(const CPUModeLegacy c, FormatContext &ctx) { auto format(const CPUModeLegacy c, FormatContext &ctx) const {
string_view name; string_view name;
switch (c) switch (c)
{ {
@ -257,7 +257,7 @@ struct fmt::formatter<CPUModeLegacy> : formatter<string_view> {
template <> template <>
struct fmt::formatter<CafeConsoleRegion> : formatter<string_view> { struct fmt::formatter<CafeConsoleRegion> : formatter<string_view> {
template <typename FormatContext> template <typename FormatContext>
auto format(const CafeConsoleRegion v, FormatContext &ctx) { auto format(const CafeConsoleRegion v, FormatContext &ctx) const {
string_view name; string_view name;
switch (v) switch (v)
{ {

View file

@ -15,6 +15,9 @@
#if BOOST_OS_LINUX && HAS_WAYLAND #if BOOST_OS_LINUX && HAS_WAYLAND
#include "gui/helpers/wxWayland.h" #include "gui/helpers/wxWayland.h"
#endif #endif
#if __WXGTK__
#include <glib.h>
#endif
#include <wx/image.h> #include <wx/image.h>
#include <wx/filename.h> #include <wx/filename.h>

View file

@ -8,7 +8,7 @@ template <>
struct fmt::formatter<wxString> : formatter<string_view> struct fmt::formatter<wxString> : formatter<string_view>
{ {
template <typename FormatContext> template <typename FormatContext>
auto format(const wxString& str, FormatContext& ctx) auto format(const wxString& str, FormatContext& ctx) const
{ {
return formatter<string_view>::format(str.c_str().AsChar(), ctx); return formatter<string_view>::format(str.c_str().AsChar(), ctx);
} }

View file

@ -127,7 +127,7 @@ using EmulatedControllerPtr = std::shared_ptr<EmulatedController>;
template <> template <>
struct fmt::formatter<EmulatedController::Type> : formatter<string_view> { struct fmt::formatter<EmulatedController::Type> : formatter<string_view> {
template <typename FormatContext> template <typename FormatContext>
auto format(EmulatedController::Type v, FormatContext& ctx) { auto format(EmulatedController::Type v, FormatContext& ctx) const {
switch (v) switch (v)
{ {
case EmulatedController::Type::VPAD: return formatter<string_view>::format("Wii U Gamepad", ctx); case EmulatedController::Type::VPAD: return formatter<string_view>::format("Wii U Gamepad", ctx);

View file

@ -52,7 +52,6 @@ add_library(CemuUtil
MemMapper/MemMapper.h MemMapper/MemMapper.h
SystemInfo/SystemInfo.cpp SystemInfo/SystemInfo.cpp
SystemInfo/SystemInfo.h SystemInfo/SystemInfo.h
ThreadPool/ThreadPool.cpp
ThreadPool/ThreadPool.h ThreadPool/ThreadPool.h
tinyxml2/tinyxml2.cpp tinyxml2/tinyxml2.cpp
tinyxml2/tinyxml2.h tinyxml2/tinyxml2.h

View file

@ -194,7 +194,7 @@ namespace robin_hood {
// workaround missing "is_trivially_copyable" in g++ < 5.0 // workaround missing "is_trivially_copyable" in g++ < 5.0
// See https://stackoverflow.com/a/31798726/48181 // See https://stackoverflow.com/a/31798726/48181
#if defined(__GNUC__) && __GNUC__ < 5 #if defined(__GNUC__) && __GNUC__ < 5 && !defined(__clang__)
# define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__) # define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__)
#else #else
# define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value # define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value

View file

@ -1,29 +1,6 @@
#include "crc32.h" #include "crc32.h"
#if defined(_MSC_VER) || defined(__MINGW32__) constexpr uint32 Crc32Lookup[8][256] =
#define __LITTLE_ENDIAN 1234
#define __BIG_ENDIAN 4321
#define __BYTE_ORDER __LITTLE_ENDIAN
#include <xmmintrin.h>
#ifdef __MINGW32__
#define PREFETCH(location) __builtin_prefetch(location)
#else
#define PREFETCH(location) _mm_prefetch(location, _MM_HINT_T0)
#endif
#else
// defines __BYTE_ORDER as __LITTLE_ENDIAN or __BIG_ENDIAN
#include <sys/param.h>
#ifdef __GNUC__
#define PREFETCH(location) __builtin_prefetch(location)
#else
// no prefetching
#define PREFETCH(location) ;
#endif
#endif
unsigned int Crc32Lookup[8][256] =
{ {
{ {
0x00000000,0x77073096,0xEE0E612C,0x990951BA,0x076DC419,0x706AF48F,0xE963A535,0x9E6495A3, 0x00000000,0x77073096,0xEE0E612C,0x990951BA,0x076DC419,0x706AF48F,0xE963A535,0x9E6495A3,
@ -301,20 +278,7 @@ unsigned int Crc32Lookup[8][256] =
} }
}; };
/// swap endianess uint32 crc32_calc_slice_by_8(uint32 previousCrc32, const void* data, size_t length)
static inline uint32_t swap(uint32_t x)
{
#if defined(__GNUC__) || defined(__clang__)
return __builtin_bswap32(x);
#else
return (x >> 24) |
((x >> 8) & 0x0000FF00) |
((x << 8) & 0x00FF0000) |
(x << 24);
#endif
}
unsigned int crc32_calc_slice_by_8(unsigned int previousCrc32, const void* data, int length)
{ {
uint32_t crc = ~previousCrc32; // same as previousCrc32 ^ 0xFFFFFFFF uint32_t crc = ~previousCrc32; // same as previousCrc32 ^ 0xFFFFFFFF
const uint32_t* current = (const uint32_t*)data; const uint32_t* current = (const uint32_t*)data;
@ -323,7 +287,7 @@ unsigned int crc32_calc_slice_by_8(unsigned int previousCrc32, const void* data,
while (length >= 8) while (length >= 8)
{ {
if constexpr (std::endian::native == std::endian::big){ if constexpr (std::endian::native == std::endian::big){
uint32_t one = *current++ ^ swap(crc); uint32_t one = *current++ ^ _swapEndianU32(crc);
uint32_t two = *current++; uint32_t two = *current++;
crc = Crc32Lookup[0][two & 0xFF] ^ crc = Crc32Lookup[0][two & 0xFF] ^
Crc32Lookup[1][(two >> 8) & 0xFF] ^ Crc32Lookup[1][(two >> 8) & 0xFF] ^
@ -348,13 +312,14 @@ unsigned int crc32_calc_slice_by_8(unsigned int previousCrc32, const void* data,
Crc32Lookup[7][one & 0xFF]; Crc32Lookup[7][one & 0xFF];
} }
else { else {
cemu_assert(false); static_assert(std::endian::native == std::endian::big || std::endian::native == std::endian::little,
"Platform byte-order is unsupported");
} }
length -= 8; length -= 8;
} }
const uint8_t* currentChar = (const uint8_t*)current; const uint8* currentChar = (const uint8*)current;
// remaining 1 to 7 bytes (standard algorithm) // remaining 1 to 7 bytes (standard algorithm)
while (length-- != 0) while (length-- != 0)
crc = (crc >> 8) ^ Crc32Lookup[0][(crc & 0xFF) ^ *currentChar++]; crc = (crc >> 8) ^ Crc32Lookup[0][(crc & 0xFF) ^ *currentChar++];
@ -362,20 +327,20 @@ unsigned int crc32_calc_slice_by_8(unsigned int previousCrc32, const void* data,
return ~crc; // same as crc ^ 0xFFFFFFFF return ~crc; // same as crc ^ 0xFFFFFFFF
} }
unsigned int crc32_calc(unsigned int c, const void* data, int length) uint32 crc32_calc(uint32 c, const void* data, size_t length)
{ {
if (length >= 16) if (length >= 16)
{ {
return crc32_calc_slice_by_8(c, data, length); return crc32_calc_slice_by_8(c, data, length);
} }
unsigned char* p = (unsigned char*)data; const uint8* p = (const uint8*)data;
if (length == 0) if (length == 0)
return c; return c;
c ^= 0xFFFFFFFF; c ^= 0xFFFFFFFF;
while (length) while (length)
{ {
unsigned char temp = *p; uint8 temp = *p;
temp ^= (unsigned char)c; temp ^= (uint8)c;
c = (c >> 8) ^ Crc32Lookup[0][temp]; c = (c >> 8) ^ Crc32Lookup[0][temp];
// next // next
length--; length--;

View file

@ -1,8 +1,8 @@
#pragma once #pragma once
unsigned int crc32_calc(unsigned int c, const void* data, int length); uint32 crc32_calc(uint32 c, const void* data, size_t length);
inline unsigned int crc32_calc(const void* data, int length) inline uint32 crc32_calc(const void* data, size_t length)
{ {
return crc32_calc(0, data, length); return crc32_calc(0, data, length);
} }