mirror of
https://github.com/cemu-project/Cemu.git
synced 2025-07-02 13:01:18 +12:00
nsyshid: Add Skylander Xbox 360 Portal support (#1550)
This commit is contained in:
parent
352a918494
commit
33d5c6d490
9 changed files with 864 additions and 5 deletions
|
@ -476,6 +476,10 @@ add_library(CemuCafe
|
|||
OS/libs/nsyshid/Infinity.h
|
||||
OS/libs/nsyshid/Skylander.cpp
|
||||
OS/libs/nsyshid/Skylander.h
|
||||
OS/libs/nsyshid/SkylanderXbox360.cpp
|
||||
OS/libs/nsyshid/SkylanderXbox360.h
|
||||
OS/libs/nsyshid/g721/g721.cpp
|
||||
OS/libs/nsyshid/g721/g721.h
|
||||
OS/libs/nsyskbd/nsyskbd.cpp
|
||||
OS/libs/nsyskbd/nsyskbd.h
|
||||
OS/libs/nsysnet/nsysnet.cpp
|
||||
|
|
|
@ -172,7 +172,7 @@ namespace nsyshid
|
|||
|
||||
std::shared_ptr<Device> FindDevice(std::function<bool(const std::shared_ptr<Device>&)> isWantedDevice);
|
||||
|
||||
bool FindDeviceById(uint16 vendorId, uint16 productId);
|
||||
std::shared_ptr<Device> FindDeviceById(uint16 vendorId, uint16 productId);
|
||||
|
||||
bool IsDeviceWhitelisted(uint16 vendorId, uint16 productId);
|
||||
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
#include "Infinity.h"
|
||||
#include "Skylander.h"
|
||||
#include "config/CemuConfig.h"
|
||||
#include "SkylanderXbox360.h"
|
||||
|
||||
namespace nsyshid::backend::emulated
|
||||
{
|
||||
|
@ -28,6 +29,13 @@ namespace nsyshid::backend::emulated
|
|||
auto device = std::make_shared<SkylanderPortalDevice>();
|
||||
AttachDevice(device);
|
||||
}
|
||||
else if (auto usb_portal = FindDeviceById(0x1430, 0x1F17))
|
||||
{
|
||||
cemuLog_logDebug(LogType::Force, "Attaching Xbox 360 Portal");
|
||||
// Add Skylander Xbox 360 Portal
|
||||
auto device = std::make_shared<SkylanderXbox360PortalLibusb>(usb_portal);
|
||||
AttachDevice(device);
|
||||
}
|
||||
if (GetConfig().emulated_usb_devices.emulate_infinity_base && !FindDeviceById(0x0E6F, 0x0129))
|
||||
{
|
||||
cemuLog_logDebug(LogType::Force, "Attaching Emulated Base");
|
||||
|
|
160
src/Cafe/OS/libs/nsyshid/SkylanderXbox360.cpp
Normal file
160
src/Cafe/OS/libs/nsyshid/SkylanderXbox360.cpp
Normal file
|
@ -0,0 +1,160 @@
|
|||
#include "SkylanderXbox360.h"
|
||||
|
||||
namespace nsyshid
|
||||
{
|
||||
SkylanderXbox360PortalLibusb::SkylanderXbox360PortalLibusb(std::shared_ptr<Device> usbPortal)
|
||||
: Device(0x1430, 0x0150, 1, 2, 0)
|
||||
{
|
||||
m_IsOpened = false;
|
||||
m_usbPortal = std::static_pointer_cast<backend::libusb::DeviceLibusb>(usbPortal);
|
||||
}
|
||||
|
||||
bool SkylanderXbox360PortalLibusb::Open()
|
||||
{
|
||||
return m_usbPortal->Open();
|
||||
}
|
||||
|
||||
void SkylanderXbox360PortalLibusb::Close()
|
||||
{
|
||||
return m_usbPortal->Close();
|
||||
}
|
||||
|
||||
bool SkylanderXbox360PortalLibusb::IsOpened()
|
||||
{
|
||||
return m_usbPortal->IsOpened();
|
||||
}
|
||||
|
||||
Device::ReadResult SkylanderXbox360PortalLibusb::Read(ReadMessage* message)
|
||||
{
|
||||
std::vector<uint8> xboxData(std::min<uint32>(32, message->length + sizeof(XBOX_DATA_HEADER)), 0);
|
||||
memcpy(xboxData.data(), XBOX_DATA_HEADER, sizeof(XBOX_DATA_HEADER));
|
||||
memcpy(xboxData.data() + sizeof(XBOX_DATA_HEADER), message->data, message->length - sizeof(XBOX_DATA_HEADER));
|
||||
|
||||
ReadMessage xboxMessage(xboxData.data(), xboxData.size(), 0);
|
||||
auto result = m_usbPortal->Read(&xboxMessage);
|
||||
|
||||
memcpy(message->data, xboxData.data() + sizeof(XBOX_DATA_HEADER), message->length);
|
||||
message->bytesRead = xboxMessage.bytesRead;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Use InterruptTransfer instead of ControlTransfer
|
||||
bool SkylanderXbox360PortalLibusb::SetReport(ReportMessage* message)
|
||||
{
|
||||
if (message->data[0] == 'M' && message->data[1] == 0x01) // Enables Speaker
|
||||
g72x_init_state(&m_state);
|
||||
|
||||
std::vector<uint8> xboxData(message->length + sizeof(XBOX_DATA_HEADER), 0);
|
||||
memcpy(xboxData.data(), XBOX_DATA_HEADER, sizeof(XBOX_DATA_HEADER));
|
||||
memcpy(xboxData.data() + sizeof(XBOX_DATA_HEADER), message->data, message->length);
|
||||
|
||||
WriteMessage xboxMessage(xboxData.data(), xboxData.size(), 0);
|
||||
auto result = m_usbPortal->Write(&xboxMessage);
|
||||
|
||||
memcpy(message->data, xboxData.data() + sizeof(XBOX_DATA_HEADER), message->length);
|
||||
|
||||
return result == WriteResult::Success;
|
||||
}
|
||||
|
||||
Device::WriteResult SkylanderXbox360PortalLibusb::Write(WriteMessage* message)
|
||||
{
|
||||
std::vector<uint8> audioData(message->data, message->data + message->length);
|
||||
|
||||
std::vector<uint8_t> xboxAudioData;
|
||||
for (size_t i = 0; i < audioData.size(); i += 4)
|
||||
{
|
||||
int16_t sample1 = (static_cast<int16_t>(audioData[i + 1]) << 8) | audioData[i];
|
||||
int16_t sample2 = (static_cast<int16_t>(audioData[i + 3]) << 8) | audioData[i + 2];
|
||||
|
||||
uint8_t encoded1 = g721_encoder(sample1, &m_state) & 0x0F;
|
||||
uint8_t encoded2 = g721_encoder(sample2, &m_state) & 0x0F;
|
||||
|
||||
xboxAudioData.push_back((encoded2 << 4) | encoded1);
|
||||
}
|
||||
|
||||
std::vector<uint8> xboxData(xboxAudioData.size() + sizeof(XBOX_AUDIO_DATA_HEADER), 0);
|
||||
memcpy(xboxData.data(), XBOX_AUDIO_DATA_HEADER, sizeof(XBOX_AUDIO_DATA_HEADER));
|
||||
memcpy(xboxData.data() + sizeof(XBOX_AUDIO_DATA_HEADER), xboxAudioData.data(), xboxAudioData.size());
|
||||
|
||||
WriteMessage xboxMessage(xboxData.data(), xboxData.size(), 0);
|
||||
auto result = m_usbPortal->Write(&xboxMessage);
|
||||
|
||||
memcpy(message->data, xboxData.data() + sizeof(XBOX_AUDIO_DATA_HEADER), xboxAudioData.size());
|
||||
message->bytesWritten = xboxMessage.bytesWritten - sizeof(XBOX_AUDIO_DATA_HEADER);
|
||||
return result;
|
||||
}
|
||||
|
||||
bool SkylanderXbox360PortalLibusb::GetDescriptor(uint8 descType, uint8 descIndex, uint16 lang, uint8* output, uint32 outputMaxLength)
|
||||
{
|
||||
uint8 configurationDescriptor[0x29];
|
||||
|
||||
uint8* currentWritePtr;
|
||||
|
||||
// configuration descriptor
|
||||
currentWritePtr = configurationDescriptor + 0;
|
||||
*(uint8*)(currentWritePtr + 0) = 9; // bLength
|
||||
*(uint8*)(currentWritePtr + 1) = 2; // bDescriptorType
|
||||
*(uint16be*)(currentWritePtr + 2) = 0x0029; // wTotalLength
|
||||
*(uint8*)(currentWritePtr + 4) = 1; // bNumInterfaces
|
||||
*(uint8*)(currentWritePtr + 5) = 1; // bConfigurationValue
|
||||
*(uint8*)(currentWritePtr + 6) = 0; // iConfiguration
|
||||
*(uint8*)(currentWritePtr + 7) = 0x80; // bmAttributes
|
||||
*(uint8*)(currentWritePtr + 8) = 0xFA; // MaxPower
|
||||
currentWritePtr = currentWritePtr + 9;
|
||||
// interface descriptor
|
||||
*(uint8*)(currentWritePtr + 0) = 9; // bLength
|
||||
*(uint8*)(currentWritePtr + 1) = 0x04; // bDescriptorType
|
||||
*(uint8*)(currentWritePtr + 2) = 0; // bInterfaceNumber
|
||||
*(uint8*)(currentWritePtr + 3) = 0; // bAlternateSetting
|
||||
*(uint8*)(currentWritePtr + 4) = 2; // bNumEndpoints
|
||||
*(uint8*)(currentWritePtr + 5) = 3; // bInterfaceClass
|
||||
*(uint8*)(currentWritePtr + 6) = 0; // bInterfaceSubClass
|
||||
*(uint8*)(currentWritePtr + 7) = 0; // bInterfaceProtocol
|
||||
*(uint8*)(currentWritePtr + 8) = 0; // iInterface
|
||||
currentWritePtr = currentWritePtr + 9;
|
||||
// HID descriptor
|
||||
*(uint8*)(currentWritePtr + 0) = 9; // bLength
|
||||
*(uint8*)(currentWritePtr + 1) = 0x21; // bDescriptorType
|
||||
*(uint16be*)(currentWritePtr + 2) = 0x0111; // bcdHID
|
||||
*(uint8*)(currentWritePtr + 4) = 0x00; // bCountryCode
|
||||
*(uint8*)(currentWritePtr + 5) = 0x01; // bNumDescriptors
|
||||
*(uint8*)(currentWritePtr + 6) = 0x22; // bDescriptorType
|
||||
*(uint16be*)(currentWritePtr + 7) = 0x001D; // wDescriptorLength
|
||||
currentWritePtr = currentWritePtr + 9;
|
||||
// endpoint descriptor 1
|
||||
*(uint8*)(currentWritePtr + 0) = 7; // bLength
|
||||
*(uint8*)(currentWritePtr + 1) = 0x05; // bDescriptorType
|
||||
*(uint8*)(currentWritePtr + 2) = 0x81; // bEndpointAddress
|
||||
*(uint8*)(currentWritePtr + 3) = 0x03; // bmAttributes
|
||||
*(uint16be*)(currentWritePtr + 4) = 0x0040; // wMaxPacketSize
|
||||
*(uint8*)(currentWritePtr + 6) = 0x01; // bInterval
|
||||
currentWritePtr = currentWritePtr + 7;
|
||||
// endpoint descriptor 2
|
||||
*(uint8*)(currentWritePtr + 0) = 7; // bLength
|
||||
*(uint8*)(currentWritePtr + 1) = 0x05; // bDescriptorType
|
||||
*(uint8*)(currentWritePtr + 2) = 0x02; // bEndpointAddress
|
||||
*(uint8*)(currentWritePtr + 3) = 0x03; // bmAttributes
|
||||
*(uint16be*)(currentWritePtr + 4) = 0x0040; // wMaxPacketSize
|
||||
*(uint8*)(currentWritePtr + 6) = 0x01; // bInterval
|
||||
currentWritePtr = currentWritePtr + 7;
|
||||
|
||||
cemu_assert_debug((currentWritePtr - configurationDescriptor) == 0x29);
|
||||
|
||||
memcpy(output, configurationDescriptor,
|
||||
std::min<uint32>(outputMaxLength, sizeof(configurationDescriptor)));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool SkylanderXbox360PortalLibusb::SetIdle(uint8 ifIndex,
|
||||
uint8 reportId,
|
||||
uint8 duration)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool SkylanderXbox360PortalLibusb::SetProtocol(uint8 ifIndex, uint8 protocol)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
}
|
46
src/Cafe/OS/libs/nsyshid/SkylanderXbox360.h
Normal file
46
src/Cafe/OS/libs/nsyshid/SkylanderXbox360.h
Normal file
|
@ -0,0 +1,46 @@
|
|||
#pragma once
|
||||
|
||||
#include "nsyshid.h"
|
||||
#include "BackendLibusb.h"
|
||||
#include "g721/g721.h"
|
||||
|
||||
namespace nsyshid
|
||||
{
|
||||
class SkylanderXbox360PortalLibusb final : public Device {
|
||||
public:
|
||||
SkylanderXbox360PortalLibusb(std::shared_ptr<Device> usbPortal);
|
||||
~SkylanderXbox360PortalLibusb() = default;
|
||||
|
||||
bool Open() override;
|
||||
|
||||
void Close() override;
|
||||
|
||||
bool IsOpened() override;
|
||||
|
||||
ReadResult Read(ReadMessage* message) override;
|
||||
|
||||
WriteResult Write(WriteMessage* message) override;
|
||||
|
||||
bool GetDescriptor(uint8 descType,
|
||||
uint8 descIndex,
|
||||
uint16 lang,
|
||||
uint8* output,
|
||||
uint32 outputMaxLength) override;
|
||||
|
||||
bool SetIdle(uint8 ifIndex,
|
||||
uint8 reportId,
|
||||
uint8 duration) override;
|
||||
|
||||
bool SetProtocol(uint8 ifIndex, uint8 protocol) override;
|
||||
|
||||
bool SetReport(ReportMessage* message) override;
|
||||
|
||||
private:
|
||||
std::shared_ptr<backend::libusb::DeviceLibusb> m_usbPortal;
|
||||
bool m_IsOpened;
|
||||
struct g72x_state m_state;
|
||||
};
|
||||
|
||||
constexpr uint8 XBOX_DATA_HEADER[] = { 0x0B, 0x14 };
|
||||
constexpr uint8 XBOX_AUDIO_DATA_HEADER[] = { 0x0B, 0x17 };
|
||||
} // namespace nsyshid
|
|
@ -16,6 +16,8 @@ namespace nsyshid
|
|||
m_devices.emplace_back(0x0e6f, 0x0241);
|
||||
// skylanders portal
|
||||
m_devices.emplace_back(0x1430, 0x0150);
|
||||
// skylanders 360 portal
|
||||
m_devices.emplace_back(0x1430, 0x1F17);
|
||||
// disney infinity base
|
||||
m_devices.emplace_back(0x0e6f, 0x0129);
|
||||
}
|
||||
|
|
543
src/Cafe/OS/libs/nsyshid/g721/g721.cpp
Normal file
543
src/Cafe/OS/libs/nsyshid/g721/g721.cpp
Normal file
|
@ -0,0 +1,543 @@
|
|||
/*
|
||||
* This source code is a product of Sun Microsystems, Inc. and is provided
|
||||
* for unrestricted use. Users may copy or modify this source code without
|
||||
* charge.
|
||||
*
|
||||
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
|
||||
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
|
||||
*
|
||||
* Sun source code is provided with no support and without any obligation on
|
||||
* the part of Sun Microsystems, Inc. to assist in its use, correction,
|
||||
* modification or enhancement.
|
||||
*
|
||||
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
|
||||
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
|
||||
* OR ANY PART THEREOF.
|
||||
*
|
||||
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
|
||||
* or profits or other special, indirect and consequential damages, even if
|
||||
* Sun has been advised of the possibility of such damages.
|
||||
*
|
||||
* Sun Microsystems, Inc.
|
||||
* 2550 Garcia Avenue
|
||||
* Mountain View, California 94043
|
||||
*/
|
||||
|
||||
/*
|
||||
* g721.c
|
||||
*
|
||||
* Description:
|
||||
*
|
||||
* g721_encoder(), g721_decoder()
|
||||
*
|
||||
* These routines comprise an implementation of the CCITT G.721 ADPCM
|
||||
* coding algorithm. Essentially, this implementation is identical to
|
||||
* the bit level description except for a few deviations which
|
||||
* take advantage of work station attributes, such as hardware 2's
|
||||
* complement arithmetic and large memory. Specifically, certain time
|
||||
* consuming operations such as multiplications are replaced
|
||||
* with lookup tables and software 2's complement operations are
|
||||
* replaced with hardware 2's complement.
|
||||
*
|
||||
* The deviation from the bit level specification (lookup tables)
|
||||
* preserves the bit level performance specifications.
|
||||
*
|
||||
* As outlined in the G.721 Recommendation, the algorithm is broken
|
||||
* down into modules. Each section of code below is preceded by
|
||||
* the name of the module which it is implementing.
|
||||
*
|
||||
*/
|
||||
#include "g721.h"
|
||||
#include <stdlib.h>
|
||||
|
||||
static short qtab_721[7] = { -124, 80, 178, 246, 300, 349, 400 };
|
||||
/*
|
||||
* Maps G.721 code word to reconstructed scale factor normalized log
|
||||
* magnitude values.
|
||||
*/
|
||||
static short _dqlntab[16] = { -2048, 4, 135, 213, 273, 323, 373, 425,
|
||||
425, 373, 323, 273, 213, 135, 4, -2048 };
|
||||
|
||||
/* Maps G.721 code word to log of scale factor multiplier. */
|
||||
static short _witab[16] = { -12, 18, 41, 64, 112, 198, 355, 1122,
|
||||
1122, 355, 198, 112, 64, 41, 18, -12 };
|
||||
/*
|
||||
* Maps G.721 code words to a set of values whose long and short
|
||||
* term averages are computed and then compared to give an indication
|
||||
* how stationary (steady state) the signal is.
|
||||
*/
|
||||
static short _fitab[16] = { 0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
|
||||
0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0 };
|
||||
|
||||
/*
|
||||
* g721_encoder()
|
||||
*
|
||||
* Encodes the input value of linear PCM from sl and returns
|
||||
* the resulting code.
|
||||
*/
|
||||
int g721_encoder(int sl, struct g72x_state* state_ptr)
|
||||
{
|
||||
short sezi, se, sez; /* ACCUM */
|
||||
short d; /* SUBTA */
|
||||
short sr; /* ADDB */
|
||||
short y; /* MIX */
|
||||
short dqsez; /* ADDC */
|
||||
short dq, i;
|
||||
|
||||
sl >>= 2; /* linearize input sample to 14-bit PCM */
|
||||
|
||||
sezi = predictor_zero(state_ptr);
|
||||
sez = sezi >> 1;
|
||||
se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
|
||||
|
||||
d = sl - se; /* estimation difference */
|
||||
|
||||
/* quantize the prediction difference */
|
||||
y = step_size(state_ptr); /* quantizer step size */
|
||||
i = quantize(d, y, qtab_721, 7); /* i = ADPCM code */
|
||||
|
||||
dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */
|
||||
|
||||
sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
|
||||
|
||||
dqsez = sr + sez - se; /* pole prediction diff. */
|
||||
|
||||
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
|
||||
|
||||
return (i);
|
||||
}
|
||||
|
||||
/*
|
||||
* g721_decoder()
|
||||
*
|
||||
* Description:
|
||||
*
|
||||
* Decodes a 4-bit code of G.721 encoded data of i and
|
||||
* returns the resulting linear PCM
|
||||
*/
|
||||
int g721_decoder(int i, struct g72x_state* state_ptr)
|
||||
{
|
||||
short sezi, sei, sez, se; /* ACCUM */
|
||||
short y; /* MIX */
|
||||
short sr; /* ADDB */
|
||||
short dq;
|
||||
short dqsez;
|
||||
|
||||
i &= 0x0f; /* mask to get proper bits */
|
||||
sezi = predictor_zero(state_ptr);
|
||||
sez = sezi >> 1;
|
||||
sei = sezi + predictor_pole(state_ptr);
|
||||
se = sei >> 1; /* se = estimated signal */
|
||||
|
||||
y = step_size(state_ptr); /* dynamic quantizer step size */
|
||||
|
||||
dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */
|
||||
|
||||
sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq; /* reconst. signal */
|
||||
|
||||
dqsez = sr - se + sez; /* pole prediction diff. */
|
||||
|
||||
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
|
||||
|
||||
return (sr << 2);
|
||||
}
|
||||
|
||||
|
||||
static short power2[15] = { 1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
|
||||
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000 };
|
||||
|
||||
/*
|
||||
* quan()
|
||||
*
|
||||
* quantizes the input val against the table of size short integers.
|
||||
* It returns i if table[i - 1] <= val < table[i].
|
||||
*
|
||||
* Using linear search for simple coding.
|
||||
*/
|
||||
static int quan(int val, short* table, int size)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < size; i++)
|
||||
if (val < *table++)
|
||||
break;
|
||||
return (i);
|
||||
}
|
||||
|
||||
/*
|
||||
* fmult()
|
||||
*
|
||||
* returns the integer product of the 14-bit integer "an" and
|
||||
* "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
|
||||
*/
|
||||
static int fmult(int an, int srn)
|
||||
{
|
||||
short anmag, anexp, anmant;
|
||||
short wanexp, wanmant;
|
||||
short retval;
|
||||
|
||||
anmag = (an > 0) ? an : ((-an) & 0x1FFF);
|
||||
anexp = quan(anmag, power2, 15) - 6;
|
||||
anmant = (anmag == 0) ? 32 : (anexp >= 0) ? anmag >> anexp : anmag << -anexp;
|
||||
wanexp = anexp + ((srn >> 6) & 0xF) - 13;
|
||||
|
||||
wanmant = (anmant * (srn & 077) + 0x30) >> 4;
|
||||
retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) : (wanmant >> -wanexp);
|
||||
|
||||
return (((an ^ srn) < 0) ? -retval : retval);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* update()
|
||||
*
|
||||
* updates the state variables for each output code
|
||||
*/
|
||||
void update(int code_size, /* distinguish 723_40 with others */
|
||||
int y, /* quantizer step size */
|
||||
int wi, /* scale factor multiplier */
|
||||
int fi, /* for long/short term energies */
|
||||
int dq, /* quantized prediction difference */
|
||||
int sr, /* reconstructed signal */
|
||||
int dqsez, /* difference from 2-pole predictor */
|
||||
struct g72x_state* state_ptr) /* coder state pointer */
|
||||
{
|
||||
int cnt;
|
||||
short mag, exp; /* Adaptive predictor, FLOAT A */
|
||||
short a2p = 0; /* LIMC */
|
||||
short a1ul; /* UPA1 */
|
||||
short pks1; /* UPA2 */
|
||||
short fa1;
|
||||
char tr; /* tone/transition detector */
|
||||
short ylint, thr2, dqthr;
|
||||
short ylfrac, thr1;
|
||||
short pk0;
|
||||
|
||||
pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */
|
||||
|
||||
mag = dq & 0x7FFF; /* prediction difference magnitude */
|
||||
/* TRANS */
|
||||
ylint = state_ptr->yl >> 15; /* exponent part of yl */
|
||||
ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */
|
||||
thr1 = (32 + ylfrac) << ylint; /* threshold */
|
||||
thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */
|
||||
dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */
|
||||
if (state_ptr->td == 0) /* signal supposed voice */
|
||||
tr = 0;
|
||||
else if (mag <= dqthr) /* supposed data, but small mag */
|
||||
tr = 0; /* treated as voice */
|
||||
else /* signal is data (modem) */
|
||||
tr = 1;
|
||||
|
||||
/*
|
||||
* Quantizer scale factor adaptation.
|
||||
*/
|
||||
|
||||
/* FUNCTW & FILTD & DELAY */
|
||||
/* update non-steady state step size multiplier */
|
||||
state_ptr->yu = y + ((wi - y) >> 5);
|
||||
|
||||
/* LIMB */
|
||||
if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */
|
||||
state_ptr->yu = 544;
|
||||
else if (state_ptr->yu > 5120)
|
||||
state_ptr->yu = 5120;
|
||||
|
||||
/* FILTE & DELAY */
|
||||
/* update steady state step size multiplier */
|
||||
state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
|
||||
|
||||
/*
|
||||
* Adaptive predictor coefficients.
|
||||
*/
|
||||
if (tr == 1) { /* reset a's and b's for modem signal */
|
||||
state_ptr->a[0] = 0;
|
||||
state_ptr->a[1] = 0;
|
||||
state_ptr->b[0] = 0;
|
||||
state_ptr->b[1] = 0;
|
||||
state_ptr->b[2] = 0;
|
||||
state_ptr->b[3] = 0;
|
||||
state_ptr->b[4] = 0;
|
||||
state_ptr->b[5] = 0;
|
||||
} else { /* update a's and b's */
|
||||
pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */
|
||||
|
||||
/* update predictor pole a[1] */
|
||||
a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
|
||||
if (dqsez != 0) {
|
||||
fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
|
||||
if (fa1 < -8191) /* a2p = function of fa1 */
|
||||
a2p -= 0x100;
|
||||
else if (fa1 > 8191)
|
||||
a2p += 0xFF;
|
||||
else
|
||||
a2p += fa1 >> 5;
|
||||
|
||||
if (pk0 ^ state_ptr->pk[1])
|
||||
/* LIMC */
|
||||
if (a2p <= -12160)
|
||||
a2p = -12288;
|
||||
else if (a2p >= 12416)
|
||||
a2p = 12288;
|
||||
else
|
||||
a2p -= 0x80;
|
||||
else if (a2p <= -12416)
|
||||
a2p = -12288;
|
||||
else if (a2p >= 12160)
|
||||
a2p = 12288;
|
||||
else
|
||||
a2p += 0x80;
|
||||
}
|
||||
|
||||
/* TRIGB & DELAY */
|
||||
state_ptr->a[1] = a2p;
|
||||
|
||||
/* UPA1 */
|
||||
/* update predictor pole a[0] */
|
||||
state_ptr->a[0] -= state_ptr->a[0] >> 8;
|
||||
if (dqsez != 0) {
|
||||
if (pks1 == 0)
|
||||
state_ptr->a[0] += 192;
|
||||
else
|
||||
state_ptr->a[0] -= 192;
|
||||
}
|
||||
|
||||
/* LIMD */
|
||||
a1ul = 15360 - a2p;
|
||||
if (state_ptr->a[0] < -a1ul)
|
||||
state_ptr->a[0] = -a1ul;
|
||||
else if (state_ptr->a[0] > a1ul)
|
||||
state_ptr->a[0] = a1ul;
|
||||
|
||||
/* UPB : update predictor zeros b[6] */
|
||||
for (cnt = 0; cnt < 6; cnt++) {
|
||||
if (code_size == 5) /* for 40Kbps G.723 */
|
||||
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
|
||||
else /* for G.721 and 24Kbps G.723 */
|
||||
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
|
||||
if (dq & 0x7FFF) { /* XOR */
|
||||
if ((dq ^ state_ptr->dq[cnt]) >= 0)
|
||||
state_ptr->b[cnt] += 128;
|
||||
else
|
||||
state_ptr->b[cnt] -= 128;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (cnt = 5; cnt > 0; cnt--)
|
||||
state_ptr->dq[cnt] = state_ptr->dq[cnt - 1];
|
||||
/* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
|
||||
if (mag == 0) {
|
||||
state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20;
|
||||
} else {
|
||||
exp = quan(mag, power2, 15);
|
||||
state_ptr->dq[0] = (dq >= 0) ? (exp << 6) + ((mag << 6) >> exp)
|
||||
: (exp << 6) + ((mag << 6) >> exp) - 0x400;
|
||||
}
|
||||
|
||||
state_ptr->sr[1] = state_ptr->sr[0];
|
||||
/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
|
||||
if (sr == 0) {
|
||||
state_ptr->sr[0] = 0x20;
|
||||
} else if (sr > 0) {
|
||||
exp = quan(sr, power2, 15);
|
||||
state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
|
||||
} else if (sr > -32768) {
|
||||
mag = -sr;
|
||||
exp = quan(mag, power2, 15);
|
||||
state_ptr->sr[0] = (exp << 6) + ((mag << 6) >> exp) - 0x400;
|
||||
} else
|
||||
state_ptr->sr[0] = 0xFC20;
|
||||
|
||||
/* DELAY A */
|
||||
state_ptr->pk[1] = state_ptr->pk[0];
|
||||
state_ptr->pk[0] = pk0;
|
||||
|
||||
/* TONE */
|
||||
if (tr == 1) /* this sample has been treated as data */
|
||||
state_ptr->td = 0; /* next one will be treated as voice */
|
||||
else if (a2p < -11776) /* small sample-to-sample correlation */
|
||||
state_ptr->td = 1; /* signal may be data */
|
||||
else /* signal is voice */
|
||||
state_ptr->td = 0;
|
||||
|
||||
/*
|
||||
* Adaptation speed control.
|
||||
*/
|
||||
state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */
|
||||
state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */
|
||||
|
||||
if (tr == 1)
|
||||
state_ptr->ap = 256;
|
||||
else if (y < 1536) /* SUBTC */
|
||||
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
|
||||
else if (state_ptr->td == 1)
|
||||
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
|
||||
else if (abs((state_ptr->dms << 2) - state_ptr->dml) >= (state_ptr->dml >> 3))
|
||||
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
|
||||
else
|
||||
state_ptr->ap += (-state_ptr->ap) >> 4;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* g72x_init_state()
|
||||
*
|
||||
* This routine initializes and/or resets the g72x_state structure
|
||||
* pointed to by 'state_ptr'.
|
||||
* All the initial state values are specified in the CCITT G.721 document.
|
||||
*/
|
||||
void g72x_init_state(struct g72x_state* state_ptr)
|
||||
{
|
||||
int cnta;
|
||||
|
||||
state_ptr->yl = 34816;
|
||||
state_ptr->yu = 544;
|
||||
state_ptr->dms = 0;
|
||||
state_ptr->dml = 0;
|
||||
state_ptr->ap = 0;
|
||||
for (cnta = 0; cnta < 2; cnta++) {
|
||||
state_ptr->a[cnta] = 0;
|
||||
state_ptr->pk[cnta] = 0;
|
||||
state_ptr->sr[cnta] = 32;
|
||||
}
|
||||
for (cnta = 0; cnta < 6; cnta++) {
|
||||
state_ptr->b[cnta] = 0;
|
||||
state_ptr->dq[cnta] = 32;
|
||||
}
|
||||
state_ptr->td = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* predictor_zero()
|
||||
*
|
||||
* computes the estimated signal from 6-zero predictor.
|
||||
*
|
||||
*/
|
||||
int predictor_zero(struct g72x_state* state_ptr)
|
||||
{
|
||||
int i;
|
||||
int sezi;
|
||||
|
||||
sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
|
||||
for (i = 1; i < 6; i++) /* ACCUM */
|
||||
sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
|
||||
return (sezi);
|
||||
}
|
||||
/*
|
||||
* predictor_pole()
|
||||
*
|
||||
* computes the estimated signal from 2-pole predictor.
|
||||
*
|
||||
*/
|
||||
int predictor_pole(struct g72x_state* state_ptr)
|
||||
{
|
||||
return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
|
||||
fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
|
||||
}
|
||||
/*
|
||||
* step_size()
|
||||
*
|
||||
* computes the quantization step size of the adaptive quantizer.
|
||||
*
|
||||
*/
|
||||
int step_size(struct g72x_state* state_ptr)
|
||||
{
|
||||
int y;
|
||||
int dif;
|
||||
int al;
|
||||
|
||||
if (state_ptr->ap >= 256)
|
||||
return (state_ptr->yu);
|
||||
else {
|
||||
y = state_ptr->yl >> 6;
|
||||
dif = state_ptr->yu - y;
|
||||
al = state_ptr->ap >> 2;
|
||||
if (dif > 0)
|
||||
y += (dif * al) >> 6;
|
||||
else if (dif < 0)
|
||||
y += (dif * al + 0x3F) >> 6;
|
||||
return (y);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* quantize()
|
||||
*
|
||||
* Given a raw sample, 'd', of the difference signal and a
|
||||
* quantization step size scale factor, 'y', this routine returns the
|
||||
* ADPCM codeword to which that sample gets quantized. The step
|
||||
* size scale factor division operation is done in the log base 2 domain
|
||||
* as a subtraction.
|
||||
*/
|
||||
int quantize(int d, /* Raw difference signal sample */
|
||||
int y, /* Step size multiplier */
|
||||
short* table, /* quantization table */
|
||||
int size) /* table size of short integers */
|
||||
{
|
||||
short dqm; /* Magnitude of 'd' */
|
||||
short exp; /* Integer part of base 2 log of 'd' */
|
||||
short mant; /* Fractional part of base 2 log */
|
||||
short dl; /* Log of magnitude of 'd' */
|
||||
short dln; /* Step size scale factor normalized log */
|
||||
int i;
|
||||
|
||||
/*
|
||||
* LOG
|
||||
*
|
||||
* Compute base 2 log of 'd', and store in 'dl'.
|
||||
*/
|
||||
dqm = abs(d);
|
||||
exp = quan(dqm >> 1, power2, 15);
|
||||
mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */
|
||||
dl = (exp << 7) + mant;
|
||||
|
||||
/*
|
||||
* SUBTB
|
||||
*
|
||||
* "Divide" by step size multiplier.
|
||||
*/
|
||||
dln = dl - (y >> 2);
|
||||
|
||||
/*
|
||||
* QUAN
|
||||
*
|
||||
* Obtain codword i for 'd'.
|
||||
*/
|
||||
i = quan(dln, table, size);
|
||||
if (d < 0) /* take 1's complement of i */
|
||||
return ((size << 1) + 1 - i);
|
||||
else if (i == 0) /* take 1's complement of 0 */
|
||||
return ((size << 1) + 1); /* new in 1988 */
|
||||
else
|
||||
return (i);
|
||||
}
|
||||
/*
|
||||
* reconstruct()
|
||||
*
|
||||
* Returns reconstructed difference signal 'dq' obtained from
|
||||
* codeword 'i' and quantization step size scale factor 'y'.
|
||||
* Multiplication is performed in log base 2 domain as addition.
|
||||
*/
|
||||
int reconstruct(int sign, /* 0 for non-negative value */
|
||||
int dqln, /* G.72x codeword */
|
||||
int y) /* Step size multiplier */
|
||||
{
|
||||
short dql; /* Log of 'dq' magnitude */
|
||||
short dex; /* Integer part of log */
|
||||
short dqt;
|
||||
short dq; /* Reconstructed difference signal sample */
|
||||
|
||||
dql = dqln + (y >> 2); /* ADDA */
|
||||
|
||||
if (dql < 0) {
|
||||
return ((sign) ? -0x8000 : 0);
|
||||
} else { /* ANTILOG */
|
||||
dex = (dql >> 7) & 15;
|
||||
dqt = 128 + (dql & 127);
|
||||
dq = (dqt << 7) >> (14 - dex);
|
||||
return ((sign) ? (dq - 0x8000) : dq);
|
||||
}
|
||||
}
|
96
src/Cafe/OS/libs/nsyshid/g721/g721.h
Normal file
96
src/Cafe/OS/libs/nsyshid/g721/g721.h
Normal file
|
@ -0,0 +1,96 @@
|
|||
/*
|
||||
* This source code is a product of Sun Microsystems, Inc. and is provided
|
||||
* for unrestricted use. Users may copy or modify this source code without
|
||||
* charge.
|
||||
*
|
||||
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
|
||||
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
|
||||
*
|
||||
* Sun source code is provided with no support and without any obligation on
|
||||
* the part of Sun Microsystems, Inc. to assist in its use, correction,
|
||||
* modification or enhancement.
|
||||
*
|
||||
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
|
||||
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
|
||||
* OR ANY PART THEREOF.
|
||||
*
|
||||
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
|
||||
* or profits or other special, indirect and consequential damages, even if
|
||||
* Sun has been advised of the possibility of such damages.
|
||||
*
|
||||
* Sun Microsystems, Inc.
|
||||
* 2550 Garcia Avenue
|
||||
* Mountain View, California 94043
|
||||
*/
|
||||
|
||||
/*
|
||||
* g72x.h
|
||||
*
|
||||
* Header file for CCITT conversion routines.
|
||||
*
|
||||
*/
|
||||
#ifndef _G72X_H
|
||||
#define _G72X_H
|
||||
|
||||
/*
|
||||
* The following is the definition of the state structure
|
||||
* used by the G.721/G.723 encoder and decoder to preserve their internal
|
||||
* state between successive calls. The meanings of the majority
|
||||
* of the state structure fields are explained in detail in the
|
||||
* CCITT Recommendation G.721. The field names are essentially identical
|
||||
* to variable names in the bit level description of the coding algorithm
|
||||
* included in this Recommendation.
|
||||
*/
|
||||
struct g72x_state {
|
||||
long yl; /* Locked or steady state step size multiplier. */
|
||||
short yu; /* Unlocked or non-steady state step size multiplier. */
|
||||
short dms; /* Short term energy estimate. */
|
||||
short dml; /* Long term energy estimate. */
|
||||
short ap; /* Linear weighting coefficient of 'yl' and 'yu'. */
|
||||
|
||||
short a[2]; /* Coefficients of pole portion of prediction filter. */
|
||||
short b[6]; /* Coefficients of zero portion of prediction filter. */
|
||||
short pk[2]; /*
|
||||
* Signs of previous two samples of a partially
|
||||
* reconstructed signal.
|
||||
*/
|
||||
short dq[6]; /*
|
||||
* Previous 6 samples of the quantized difference
|
||||
* signal represented in an internal floating point
|
||||
* format.
|
||||
*/
|
||||
short sr[2]; /*
|
||||
* Previous 2 samples of the quantized difference
|
||||
* signal represented in an internal floating point
|
||||
* format.
|
||||
*/
|
||||
char td; /* delayed tone detect, new in 1988 version */
|
||||
};
|
||||
|
||||
/* External function definitions. */
|
||||
|
||||
void g72x_init_state(struct g72x_state*);
|
||||
int g721_encoder(int sample, struct g72x_state* state_ptr);
|
||||
int g721_decoder(int code, struct g72x_state* state_ptr);
|
||||
|
||||
|
||||
int quantize(int d, int y, short* table, int size);
|
||||
int reconstruct(int, int, int);
|
||||
void
|
||||
|
||||
update(int code_size,
|
||||
int y,
|
||||
int wi,
|
||||
int fi,
|
||||
int dq,
|
||||
int sr,
|
||||
int dqsez,
|
||||
struct g72x_state* state_ptr);
|
||||
|
||||
int predictor_zero(struct g72x_state* state_ptr);
|
||||
|
||||
int predictor_pole(struct g72x_state* state_ptr);
|
||||
int step_size(struct g72x_state* state_ptr);
|
||||
#endif /* !_G72X_H */
|
||||
|
|
@ -256,17 +256,17 @@ namespace nsyshid
|
|||
device->m_productId);
|
||||
}
|
||||
|
||||
bool FindDeviceById(uint16 vendorId, uint16 productId)
|
||||
std::shared_ptr<Device> FindDeviceById(uint16 vendorId, uint16 productId)
|
||||
{
|
||||
std::lock_guard<std::recursive_mutex> lock(hidMutex);
|
||||
for (const auto& device : deviceList)
|
||||
{
|
||||
if (device->m_vendorId == vendorId && device->m_productId == productId)
|
||||
{
|
||||
return true;
|
||||
return device;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void export_HIDAddClient(PPCInterpreter_t* hCPU)
|
||||
|
@ -876,7 +876,7 @@ namespace nsyshid
|
|||
return nullptr;
|
||||
}
|
||||
|
||||
bool Backend::FindDeviceById(uint16 vendorId, uint16 productId)
|
||||
std::shared_ptr<Device> Backend::FindDeviceById(uint16 vendorId, uint16 productId)
|
||||
{
|
||||
return nsyshid::FindDeviceById(vendorId, productId);
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue