nsyshid: Add Skylander Xbox 360 Portal support (#1550)
Some checks failed
Generate translation template / generate-pot (push) Failing after 1s
Build check / build (push) Has been cancelled

This commit is contained in:
gamerbross 2025-05-04 21:44:46 +02:00 committed by GitHub
parent 352a918494
commit 33d5c6d490
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 864 additions and 5 deletions

View file

@ -476,6 +476,10 @@ add_library(CemuCafe
OS/libs/nsyshid/Infinity.h OS/libs/nsyshid/Infinity.h
OS/libs/nsyshid/Skylander.cpp OS/libs/nsyshid/Skylander.cpp
OS/libs/nsyshid/Skylander.h OS/libs/nsyshid/Skylander.h
OS/libs/nsyshid/SkylanderXbox360.cpp
OS/libs/nsyshid/SkylanderXbox360.h
OS/libs/nsyshid/g721/g721.cpp
OS/libs/nsyshid/g721/g721.h
OS/libs/nsyskbd/nsyskbd.cpp OS/libs/nsyskbd/nsyskbd.cpp
OS/libs/nsyskbd/nsyskbd.h OS/libs/nsyskbd/nsyskbd.h
OS/libs/nsysnet/nsysnet.cpp OS/libs/nsysnet/nsysnet.cpp

View file

@ -172,7 +172,7 @@ namespace nsyshid
std::shared_ptr<Device> FindDevice(std::function<bool(const std::shared_ptr<Device>&)> isWantedDevice); std::shared_ptr<Device> FindDevice(std::function<bool(const std::shared_ptr<Device>&)> isWantedDevice);
bool FindDeviceById(uint16 vendorId, uint16 productId); std::shared_ptr<Device> FindDeviceById(uint16 vendorId, uint16 productId);
bool IsDeviceWhitelisted(uint16 vendorId, uint16 productId); bool IsDeviceWhitelisted(uint16 vendorId, uint16 productId);

View file

@ -4,6 +4,7 @@
#include "Infinity.h" #include "Infinity.h"
#include "Skylander.h" #include "Skylander.h"
#include "config/CemuConfig.h" #include "config/CemuConfig.h"
#include "SkylanderXbox360.h"
namespace nsyshid::backend::emulated namespace nsyshid::backend::emulated
{ {
@ -28,6 +29,13 @@ namespace nsyshid::backend::emulated
auto device = std::make_shared<SkylanderPortalDevice>(); auto device = std::make_shared<SkylanderPortalDevice>();
AttachDevice(device); AttachDevice(device);
} }
else if (auto usb_portal = FindDeviceById(0x1430, 0x1F17))
{
cemuLog_logDebug(LogType::Force, "Attaching Xbox 360 Portal");
// Add Skylander Xbox 360 Portal
auto device = std::make_shared<SkylanderXbox360PortalLibusb>(usb_portal);
AttachDevice(device);
}
if (GetConfig().emulated_usb_devices.emulate_infinity_base && !FindDeviceById(0x0E6F, 0x0129)) if (GetConfig().emulated_usb_devices.emulate_infinity_base && !FindDeviceById(0x0E6F, 0x0129))
{ {
cemuLog_logDebug(LogType::Force, "Attaching Emulated Base"); cemuLog_logDebug(LogType::Force, "Attaching Emulated Base");

View file

@ -0,0 +1,160 @@
#include "SkylanderXbox360.h"
namespace nsyshid
{
SkylanderXbox360PortalLibusb::SkylanderXbox360PortalLibusb(std::shared_ptr<Device> usbPortal)
: Device(0x1430, 0x0150, 1, 2, 0)
{
m_IsOpened = false;
m_usbPortal = std::static_pointer_cast<backend::libusb::DeviceLibusb>(usbPortal);
}
bool SkylanderXbox360PortalLibusb::Open()
{
return m_usbPortal->Open();
}
void SkylanderXbox360PortalLibusb::Close()
{
return m_usbPortal->Close();
}
bool SkylanderXbox360PortalLibusb::IsOpened()
{
return m_usbPortal->IsOpened();
}
Device::ReadResult SkylanderXbox360PortalLibusb::Read(ReadMessage* message)
{
std::vector<uint8> xboxData(std::min<uint32>(32, message->length + sizeof(XBOX_DATA_HEADER)), 0);
memcpy(xboxData.data(), XBOX_DATA_HEADER, sizeof(XBOX_DATA_HEADER));
memcpy(xboxData.data() + sizeof(XBOX_DATA_HEADER), message->data, message->length - sizeof(XBOX_DATA_HEADER));
ReadMessage xboxMessage(xboxData.data(), xboxData.size(), 0);
auto result = m_usbPortal->Read(&xboxMessage);
memcpy(message->data, xboxData.data() + sizeof(XBOX_DATA_HEADER), message->length);
message->bytesRead = xboxMessage.bytesRead;
return result;
}
// Use InterruptTransfer instead of ControlTransfer
bool SkylanderXbox360PortalLibusb::SetReport(ReportMessage* message)
{
if (message->data[0] == 'M' && message->data[1] == 0x01) // Enables Speaker
g72x_init_state(&m_state);
std::vector<uint8> xboxData(message->length + sizeof(XBOX_DATA_HEADER), 0);
memcpy(xboxData.data(), XBOX_DATA_HEADER, sizeof(XBOX_DATA_HEADER));
memcpy(xboxData.data() + sizeof(XBOX_DATA_HEADER), message->data, message->length);
WriteMessage xboxMessage(xboxData.data(), xboxData.size(), 0);
auto result = m_usbPortal->Write(&xboxMessage);
memcpy(message->data, xboxData.data() + sizeof(XBOX_DATA_HEADER), message->length);
return result == WriteResult::Success;
}
Device::WriteResult SkylanderXbox360PortalLibusb::Write(WriteMessage* message)
{
std::vector<uint8> audioData(message->data, message->data + message->length);
std::vector<uint8_t> xboxAudioData;
for (size_t i = 0; i < audioData.size(); i += 4)
{
int16_t sample1 = (static_cast<int16_t>(audioData[i + 1]) << 8) | audioData[i];
int16_t sample2 = (static_cast<int16_t>(audioData[i + 3]) << 8) | audioData[i + 2];
uint8_t encoded1 = g721_encoder(sample1, &m_state) & 0x0F;
uint8_t encoded2 = g721_encoder(sample2, &m_state) & 0x0F;
xboxAudioData.push_back((encoded2 << 4) | encoded1);
}
std::vector<uint8> xboxData(xboxAudioData.size() + sizeof(XBOX_AUDIO_DATA_HEADER), 0);
memcpy(xboxData.data(), XBOX_AUDIO_DATA_HEADER, sizeof(XBOX_AUDIO_DATA_HEADER));
memcpy(xboxData.data() + sizeof(XBOX_AUDIO_DATA_HEADER), xboxAudioData.data(), xboxAudioData.size());
WriteMessage xboxMessage(xboxData.data(), xboxData.size(), 0);
auto result = m_usbPortal->Write(&xboxMessage);
memcpy(message->data, xboxData.data() + sizeof(XBOX_AUDIO_DATA_HEADER), xboxAudioData.size());
message->bytesWritten = xboxMessage.bytesWritten - sizeof(XBOX_AUDIO_DATA_HEADER);
return result;
}
bool SkylanderXbox360PortalLibusb::GetDescriptor(uint8 descType, uint8 descIndex, uint16 lang, uint8* output, uint32 outputMaxLength)
{
uint8 configurationDescriptor[0x29];
uint8* currentWritePtr;
// configuration descriptor
currentWritePtr = configurationDescriptor + 0;
*(uint8*)(currentWritePtr + 0) = 9; // bLength
*(uint8*)(currentWritePtr + 1) = 2; // bDescriptorType
*(uint16be*)(currentWritePtr + 2) = 0x0029; // wTotalLength
*(uint8*)(currentWritePtr + 4) = 1; // bNumInterfaces
*(uint8*)(currentWritePtr + 5) = 1; // bConfigurationValue
*(uint8*)(currentWritePtr + 6) = 0; // iConfiguration
*(uint8*)(currentWritePtr + 7) = 0x80; // bmAttributes
*(uint8*)(currentWritePtr + 8) = 0xFA; // MaxPower
currentWritePtr = currentWritePtr + 9;
// interface descriptor
*(uint8*)(currentWritePtr + 0) = 9; // bLength
*(uint8*)(currentWritePtr + 1) = 0x04; // bDescriptorType
*(uint8*)(currentWritePtr + 2) = 0; // bInterfaceNumber
*(uint8*)(currentWritePtr + 3) = 0; // bAlternateSetting
*(uint8*)(currentWritePtr + 4) = 2; // bNumEndpoints
*(uint8*)(currentWritePtr + 5) = 3; // bInterfaceClass
*(uint8*)(currentWritePtr + 6) = 0; // bInterfaceSubClass
*(uint8*)(currentWritePtr + 7) = 0; // bInterfaceProtocol
*(uint8*)(currentWritePtr + 8) = 0; // iInterface
currentWritePtr = currentWritePtr + 9;
// HID descriptor
*(uint8*)(currentWritePtr + 0) = 9; // bLength
*(uint8*)(currentWritePtr + 1) = 0x21; // bDescriptorType
*(uint16be*)(currentWritePtr + 2) = 0x0111; // bcdHID
*(uint8*)(currentWritePtr + 4) = 0x00; // bCountryCode
*(uint8*)(currentWritePtr + 5) = 0x01; // bNumDescriptors
*(uint8*)(currentWritePtr + 6) = 0x22; // bDescriptorType
*(uint16be*)(currentWritePtr + 7) = 0x001D; // wDescriptorLength
currentWritePtr = currentWritePtr + 9;
// endpoint descriptor 1
*(uint8*)(currentWritePtr + 0) = 7; // bLength
*(uint8*)(currentWritePtr + 1) = 0x05; // bDescriptorType
*(uint8*)(currentWritePtr + 2) = 0x81; // bEndpointAddress
*(uint8*)(currentWritePtr + 3) = 0x03; // bmAttributes
*(uint16be*)(currentWritePtr + 4) = 0x0040; // wMaxPacketSize
*(uint8*)(currentWritePtr + 6) = 0x01; // bInterval
currentWritePtr = currentWritePtr + 7;
// endpoint descriptor 2
*(uint8*)(currentWritePtr + 0) = 7; // bLength
*(uint8*)(currentWritePtr + 1) = 0x05; // bDescriptorType
*(uint8*)(currentWritePtr + 2) = 0x02; // bEndpointAddress
*(uint8*)(currentWritePtr + 3) = 0x03; // bmAttributes
*(uint16be*)(currentWritePtr + 4) = 0x0040; // wMaxPacketSize
*(uint8*)(currentWritePtr + 6) = 0x01; // bInterval
currentWritePtr = currentWritePtr + 7;
cemu_assert_debug((currentWritePtr - configurationDescriptor) == 0x29);
memcpy(output, configurationDescriptor,
std::min<uint32>(outputMaxLength, sizeof(configurationDescriptor)));
return true;
}
bool SkylanderXbox360PortalLibusb::SetIdle(uint8 ifIndex,
uint8 reportId,
uint8 duration)
{
return true;
}
bool SkylanderXbox360PortalLibusb::SetProtocol(uint8 ifIndex, uint8 protocol)
{
return true;
}
}

View file

@ -0,0 +1,46 @@
#pragma once
#include "nsyshid.h"
#include "BackendLibusb.h"
#include "g721/g721.h"
namespace nsyshid
{
class SkylanderXbox360PortalLibusb final : public Device {
public:
SkylanderXbox360PortalLibusb(std::shared_ptr<Device> usbPortal);
~SkylanderXbox360PortalLibusb() = default;
bool Open() override;
void Close() override;
bool IsOpened() override;
ReadResult Read(ReadMessage* message) override;
WriteResult Write(WriteMessage* message) override;
bool GetDescriptor(uint8 descType,
uint8 descIndex,
uint16 lang,
uint8* output,
uint32 outputMaxLength) override;
bool SetIdle(uint8 ifIndex,
uint8 reportId,
uint8 duration) override;
bool SetProtocol(uint8 ifIndex, uint8 protocol) override;
bool SetReport(ReportMessage* message) override;
private:
std::shared_ptr<backend::libusb::DeviceLibusb> m_usbPortal;
bool m_IsOpened;
struct g72x_state m_state;
};
constexpr uint8 XBOX_DATA_HEADER[] = { 0x0B, 0x14 };
constexpr uint8 XBOX_AUDIO_DATA_HEADER[] = { 0x0B, 0x17 };
} // namespace nsyshid

View file

@ -16,6 +16,8 @@ namespace nsyshid
m_devices.emplace_back(0x0e6f, 0x0241); m_devices.emplace_back(0x0e6f, 0x0241);
// skylanders portal // skylanders portal
m_devices.emplace_back(0x1430, 0x0150); m_devices.emplace_back(0x1430, 0x0150);
// skylanders 360 portal
m_devices.emplace_back(0x1430, 0x1F17);
// disney infinity base // disney infinity base
m_devices.emplace_back(0x0e6f, 0x0129); m_devices.emplace_back(0x0e6f, 0x0129);
} }

View file

@ -0,0 +1,543 @@
/*
* This source code is a product of Sun Microsystems, Inc. and is provided
* for unrestricted use. Users may copy or modify this source code without
* charge.
*
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun source code is provided with no support and without any obligation on
* the part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* g721.c
*
* Description:
*
* g721_encoder(), g721_decoder()
*
* These routines comprise an implementation of the CCITT G.721 ADPCM
* coding algorithm. Essentially, this implementation is identical to
* the bit level description except for a few deviations which
* take advantage of work station attributes, such as hardware 2's
* complement arithmetic and large memory. Specifically, certain time
* consuming operations such as multiplications are replaced
* with lookup tables and software 2's complement operations are
* replaced with hardware 2's complement.
*
* The deviation from the bit level specification (lookup tables)
* preserves the bit level performance specifications.
*
* As outlined in the G.721 Recommendation, the algorithm is broken
* down into modules. Each section of code below is preceded by
* the name of the module which it is implementing.
*
*/
#include "g721.h"
#include <stdlib.h>
static short qtab_721[7] = { -124, 80, 178, 246, 300, 349, 400 };
/*
* Maps G.721 code word to reconstructed scale factor normalized log
* magnitude values.
*/
static short _dqlntab[16] = { -2048, 4, 135, 213, 273, 323, 373, 425,
425, 373, 323, 273, 213, 135, 4, -2048 };
/* Maps G.721 code word to log of scale factor multiplier. */
static short _witab[16] = { -12, 18, 41, 64, 112, 198, 355, 1122,
1122, 355, 198, 112, 64, 41, 18, -12 };
/*
* Maps G.721 code words to a set of values whose long and short
* term averages are computed and then compared to give an indication
* how stationary (steady state) the signal is.
*/
static short _fitab[16] = { 0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0 };
/*
* g721_encoder()
*
* Encodes the input value of linear PCM from sl and returns
* the resulting code.
*/
int g721_encoder(int sl, struct g72x_state* state_ptr)
{
short sezi, se, sez; /* ACCUM */
short d; /* SUBTA */
short sr; /* ADDB */
short y; /* MIX */
short dqsez; /* ADDC */
short dq, i;
sl >>= 2; /* linearize input sample to 14-bit PCM */
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
d = sl - se; /* estimation difference */
/* quantize the prediction difference */
y = step_size(state_ptr); /* quantizer step size */
i = quantize(d, y, qtab_721, 7); /* i = ADPCM code */
dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */
sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
dqsez = sr + sez - se; /* pole prediction diff. */
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
return (i);
}
/*
* g721_decoder()
*
* Description:
*
* Decodes a 4-bit code of G.721 encoded data of i and
* returns the resulting linear PCM
*/
int g721_decoder(int i, struct g72x_state* state_ptr)
{
short sezi, sei, sez, se; /* ACCUM */
short y; /* MIX */
short sr; /* ADDB */
short dq;
short dqsez;
i &= 0x0f; /* mask to get proper bits */
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
sei = sezi + predictor_pole(state_ptr);
se = sei >> 1; /* se = estimated signal */
y = step_size(state_ptr); /* dynamic quantizer step size */
dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */
sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq; /* reconst. signal */
dqsez = sr - se + sez; /* pole prediction diff. */
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
return (sr << 2);
}
static short power2[15] = { 1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000 };
/*
* quan()
*
* quantizes the input val against the table of size short integers.
* It returns i if table[i - 1] <= val < table[i].
*
* Using linear search for simple coding.
*/
static int quan(int val, short* table, int size)
{
int i;
for (i = 0; i < size; i++)
if (val < *table++)
break;
return (i);
}
/*
* fmult()
*
* returns the integer product of the 14-bit integer "an" and
* "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
*/
static int fmult(int an, int srn)
{
short anmag, anexp, anmant;
short wanexp, wanmant;
short retval;
anmag = (an > 0) ? an : ((-an) & 0x1FFF);
anexp = quan(anmag, power2, 15) - 6;
anmant = (anmag == 0) ? 32 : (anexp >= 0) ? anmag >> anexp : anmag << -anexp;
wanexp = anexp + ((srn >> 6) & 0xF) - 13;
wanmant = (anmant * (srn & 077) + 0x30) >> 4;
retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) : (wanmant >> -wanexp);
return (((an ^ srn) < 0) ? -retval : retval);
}
/*
* update()
*
* updates the state variables for each output code
*/
void update(int code_size, /* distinguish 723_40 with others */
int y, /* quantizer step size */
int wi, /* scale factor multiplier */
int fi, /* for long/short term energies */
int dq, /* quantized prediction difference */
int sr, /* reconstructed signal */
int dqsez, /* difference from 2-pole predictor */
struct g72x_state* state_ptr) /* coder state pointer */
{
int cnt;
short mag, exp; /* Adaptive predictor, FLOAT A */
short a2p = 0; /* LIMC */
short a1ul; /* UPA1 */
short pks1; /* UPA2 */
short fa1;
char tr; /* tone/transition detector */
short ylint, thr2, dqthr;
short ylfrac, thr1;
short pk0;
pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */
mag = dq & 0x7FFF; /* prediction difference magnitude */
/* TRANS */
ylint = state_ptr->yl >> 15; /* exponent part of yl */
ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */
thr1 = (32 + ylfrac) << ylint; /* threshold */
thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */
dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */
if (state_ptr->td == 0) /* signal supposed voice */
tr = 0;
else if (mag <= dqthr) /* supposed data, but small mag */
tr = 0; /* treated as voice */
else /* signal is data (modem) */
tr = 1;
/*
* Quantizer scale factor adaptation.
*/
/* FUNCTW & FILTD & DELAY */
/* update non-steady state step size multiplier */
state_ptr->yu = y + ((wi - y) >> 5);
/* LIMB */
if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */
state_ptr->yu = 544;
else if (state_ptr->yu > 5120)
state_ptr->yu = 5120;
/* FILTE & DELAY */
/* update steady state step size multiplier */
state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
/*
* Adaptive predictor coefficients.
*/
if (tr == 1) { /* reset a's and b's for modem signal */
state_ptr->a[0] = 0;
state_ptr->a[1] = 0;
state_ptr->b[0] = 0;
state_ptr->b[1] = 0;
state_ptr->b[2] = 0;
state_ptr->b[3] = 0;
state_ptr->b[4] = 0;
state_ptr->b[5] = 0;
} else { /* update a's and b's */
pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */
/* update predictor pole a[1] */
a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
if (dqsez != 0) {
fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
if (fa1 < -8191) /* a2p = function of fa1 */
a2p -= 0x100;
else if (fa1 > 8191)
a2p += 0xFF;
else
a2p += fa1 >> 5;
if (pk0 ^ state_ptr->pk[1])
/* LIMC */
if (a2p <= -12160)
a2p = -12288;
else if (a2p >= 12416)
a2p = 12288;
else
a2p -= 0x80;
else if (a2p <= -12416)
a2p = -12288;
else if (a2p >= 12160)
a2p = 12288;
else
a2p += 0x80;
}
/* TRIGB & DELAY */
state_ptr->a[1] = a2p;
/* UPA1 */
/* update predictor pole a[0] */
state_ptr->a[0] -= state_ptr->a[0] >> 8;
if (dqsez != 0) {
if (pks1 == 0)
state_ptr->a[0] += 192;
else
state_ptr->a[0] -= 192;
}
/* LIMD */
a1ul = 15360 - a2p;
if (state_ptr->a[0] < -a1ul)
state_ptr->a[0] = -a1ul;
else if (state_ptr->a[0] > a1ul)
state_ptr->a[0] = a1ul;
/* UPB : update predictor zeros b[6] */
for (cnt = 0; cnt < 6; cnt++) {
if (code_size == 5) /* for 40Kbps G.723 */
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
else /* for G.721 and 24Kbps G.723 */
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
if (dq & 0x7FFF) { /* XOR */
if ((dq ^ state_ptr->dq[cnt]) >= 0)
state_ptr->b[cnt] += 128;
else
state_ptr->b[cnt] -= 128;
}
}
}
for (cnt = 5; cnt > 0; cnt--)
state_ptr->dq[cnt] = state_ptr->dq[cnt - 1];
/* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
if (mag == 0) {
state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20;
} else {
exp = quan(mag, power2, 15);
state_ptr->dq[0] = (dq >= 0) ? (exp << 6) + ((mag << 6) >> exp)
: (exp << 6) + ((mag << 6) >> exp) - 0x400;
}
state_ptr->sr[1] = state_ptr->sr[0];
/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
if (sr == 0) {
state_ptr->sr[0] = 0x20;
} else if (sr > 0) {
exp = quan(sr, power2, 15);
state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
} else if (sr > -32768) {
mag = -sr;
exp = quan(mag, power2, 15);
state_ptr->sr[0] = (exp << 6) + ((mag << 6) >> exp) - 0x400;
} else
state_ptr->sr[0] = 0xFC20;
/* DELAY A */
state_ptr->pk[1] = state_ptr->pk[0];
state_ptr->pk[0] = pk0;
/* TONE */
if (tr == 1) /* this sample has been treated as data */
state_ptr->td = 0; /* next one will be treated as voice */
else if (a2p < -11776) /* small sample-to-sample correlation */
state_ptr->td = 1; /* signal may be data */
else /* signal is voice */
state_ptr->td = 0;
/*
* Adaptation speed control.
*/
state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */
state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */
if (tr == 1)
state_ptr->ap = 256;
else if (y < 1536) /* SUBTC */
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
else if (state_ptr->td == 1)
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
else if (abs((state_ptr->dms << 2) - state_ptr->dml) >= (state_ptr->dml >> 3))
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
else
state_ptr->ap += (-state_ptr->ap) >> 4;
}
/*
* g72x_init_state()
*
* This routine initializes and/or resets the g72x_state structure
* pointed to by 'state_ptr'.
* All the initial state values are specified in the CCITT G.721 document.
*/
void g72x_init_state(struct g72x_state* state_ptr)
{
int cnta;
state_ptr->yl = 34816;
state_ptr->yu = 544;
state_ptr->dms = 0;
state_ptr->dml = 0;
state_ptr->ap = 0;
for (cnta = 0; cnta < 2; cnta++) {
state_ptr->a[cnta] = 0;
state_ptr->pk[cnta] = 0;
state_ptr->sr[cnta] = 32;
}
for (cnta = 0; cnta < 6; cnta++) {
state_ptr->b[cnta] = 0;
state_ptr->dq[cnta] = 32;
}
state_ptr->td = 0;
}
/*
* predictor_zero()
*
* computes the estimated signal from 6-zero predictor.
*
*/
int predictor_zero(struct g72x_state* state_ptr)
{
int i;
int sezi;
sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
for (i = 1; i < 6; i++) /* ACCUM */
sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
return (sezi);
}
/*
* predictor_pole()
*
* computes the estimated signal from 2-pole predictor.
*
*/
int predictor_pole(struct g72x_state* state_ptr)
{
return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
}
/*
* step_size()
*
* computes the quantization step size of the adaptive quantizer.
*
*/
int step_size(struct g72x_state* state_ptr)
{
int y;
int dif;
int al;
if (state_ptr->ap >= 256)
return (state_ptr->yu);
else {
y = state_ptr->yl >> 6;
dif = state_ptr->yu - y;
al = state_ptr->ap >> 2;
if (dif > 0)
y += (dif * al) >> 6;
else if (dif < 0)
y += (dif * al + 0x3F) >> 6;
return (y);
}
}
/*
* quantize()
*
* Given a raw sample, 'd', of the difference signal and a
* quantization step size scale factor, 'y', this routine returns the
* ADPCM codeword to which that sample gets quantized. The step
* size scale factor division operation is done in the log base 2 domain
* as a subtraction.
*/
int quantize(int d, /* Raw difference signal sample */
int y, /* Step size multiplier */
short* table, /* quantization table */
int size) /* table size of short integers */
{
short dqm; /* Magnitude of 'd' */
short exp; /* Integer part of base 2 log of 'd' */
short mant; /* Fractional part of base 2 log */
short dl; /* Log of magnitude of 'd' */
short dln; /* Step size scale factor normalized log */
int i;
/*
* LOG
*
* Compute base 2 log of 'd', and store in 'dl'.
*/
dqm = abs(d);
exp = quan(dqm >> 1, power2, 15);
mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */
dl = (exp << 7) + mant;
/*
* SUBTB
*
* "Divide" by step size multiplier.
*/
dln = dl - (y >> 2);
/*
* QUAN
*
* Obtain codword i for 'd'.
*/
i = quan(dln, table, size);
if (d < 0) /* take 1's complement of i */
return ((size << 1) + 1 - i);
else if (i == 0) /* take 1's complement of 0 */
return ((size << 1) + 1); /* new in 1988 */
else
return (i);
}
/*
* reconstruct()
*
* Returns reconstructed difference signal 'dq' obtained from
* codeword 'i' and quantization step size scale factor 'y'.
* Multiplication is performed in log base 2 domain as addition.
*/
int reconstruct(int sign, /* 0 for non-negative value */
int dqln, /* G.72x codeword */
int y) /* Step size multiplier */
{
short dql; /* Log of 'dq' magnitude */
short dex; /* Integer part of log */
short dqt;
short dq; /* Reconstructed difference signal sample */
dql = dqln + (y >> 2); /* ADDA */
if (dql < 0) {
return ((sign) ? -0x8000 : 0);
} else { /* ANTILOG */
dex = (dql >> 7) & 15;
dqt = 128 + (dql & 127);
dq = (dqt << 7) >> (14 - dex);
return ((sign) ? (dq - 0x8000) : dq);
}
}

View file

@ -0,0 +1,96 @@
/*
* This source code is a product of Sun Microsystems, Inc. and is provided
* for unrestricted use. Users may copy or modify this source code without
* charge.
*
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun source code is provided with no support and without any obligation on
* the part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* g72x.h
*
* Header file for CCITT conversion routines.
*
*/
#ifndef _G72X_H
#define _G72X_H
/*
* The following is the definition of the state structure
* used by the G.721/G.723 encoder and decoder to preserve their internal
* state between successive calls. The meanings of the majority
* of the state structure fields are explained in detail in the
* CCITT Recommendation G.721. The field names are essentially identical
* to variable names in the bit level description of the coding algorithm
* included in this Recommendation.
*/
struct g72x_state {
long yl; /* Locked or steady state step size multiplier. */
short yu; /* Unlocked or non-steady state step size multiplier. */
short dms; /* Short term energy estimate. */
short dml; /* Long term energy estimate. */
short ap; /* Linear weighting coefficient of 'yl' and 'yu'. */
short a[2]; /* Coefficients of pole portion of prediction filter. */
short b[6]; /* Coefficients of zero portion of prediction filter. */
short pk[2]; /*
* Signs of previous two samples of a partially
* reconstructed signal.
*/
short dq[6]; /*
* Previous 6 samples of the quantized difference
* signal represented in an internal floating point
* format.
*/
short sr[2]; /*
* Previous 2 samples of the quantized difference
* signal represented in an internal floating point
* format.
*/
char td; /* delayed tone detect, new in 1988 version */
};
/* External function definitions. */
void g72x_init_state(struct g72x_state*);
int g721_encoder(int sample, struct g72x_state* state_ptr);
int g721_decoder(int code, struct g72x_state* state_ptr);
int quantize(int d, int y, short* table, int size);
int reconstruct(int, int, int);
void
update(int code_size,
int y,
int wi,
int fi,
int dq,
int sr,
int dqsez,
struct g72x_state* state_ptr);
int predictor_zero(struct g72x_state* state_ptr);
int predictor_pole(struct g72x_state* state_ptr);
int step_size(struct g72x_state* state_ptr);
#endif /* !_G72X_H */

View file

@ -256,17 +256,17 @@ namespace nsyshid
device->m_productId); device->m_productId);
} }
bool FindDeviceById(uint16 vendorId, uint16 productId) std::shared_ptr<Device> FindDeviceById(uint16 vendorId, uint16 productId)
{ {
std::lock_guard<std::recursive_mutex> lock(hidMutex); std::lock_guard<std::recursive_mutex> lock(hidMutex);
for (const auto& device : deviceList) for (const auto& device : deviceList)
{ {
if (device->m_vendorId == vendorId && device->m_productId == productId) if (device->m_vendorId == vendorId && device->m_productId == productId)
{ {
return true; return device;
} }
} }
return false; return nullptr;
} }
void export_HIDAddClient(PPCInterpreter_t* hCPU) void export_HIDAddClient(PPCInterpreter_t* hCPU)
@ -876,7 +876,7 @@ namespace nsyshid
return nullptr; return nullptr;
} }
bool Backend::FindDeviceById(uint16 vendorId, uint16 productId) std::shared_ptr<Device> Backend::FindDeviceById(uint16 vendorId, uint16 productId)
{ {
return nsyshid::FindDeviceById(vendorId, productId); return nsyshid::FindDeviceById(vendorId, productId);
} }